
Collaborative Learning Patterns: Assisting the Development of Component-
Based CSCL Applications

Juan I. Asensio, Yannis A. Dimitriadis, Marta Heredia, Alejandra Mar-
tínez, Francisco J. Álvarez, María T. Blasco

César A. Osuna

University of Valladolid. Spain
{juaase@tel,yannis@tel,mherrod@pireo.tel,

amartine@infor,fraalv@pireo.tel,tbq@dlyl}.uva.es

Mexican Petroleum Institute.
Mexico

cosuna@imp.mx

Abstract

The creation of a framework of software components
and their associated software design patterns would
provide great benefits for the development of reusable,
flexible, and customizable component-based CSCL ap-
plications. The development of such a framework implies
that software developers have a proper understanding of
the key concepts and principles of the domain of interest.
The achievement of this understanding is particularly
difficult in the CSCL domain, where there is a big separa-
tion among abstractions used by Educational Science
experts and those used by software developers. In order
to alleviate this problem, the paper proposes, justifies,
and illustrates the use of the so-called Collaborative
Learning Patterns: detailed descriptions of well-
accepted types of collaborative learning activities de-
fined by Collaborative Learning experts. We also present
the initial steps that would be followed so that software
developers identify software components applicable to
several types of component-based CSCL applications.
All this proposal is illustrated with the jigsaw and pyra-
mid Collaborative Learning Patterns and their use in the
development of a real CSCL application according to the
Unified Process software development methodology.

1. Introduction

During the last years, the technologies associated to
the Component-Based Software Engineering (CBSE) have
emerged as a promising solution for the achievement of
software reusability, flexibility, and maintainability in the
development of complex software systems composed of
smaller pieces [11]. The potential benefits of this new
software development paradigm became even more evi-
dent within the field of Educational Software where the

social and pedagogical particularities of each educational
context have traditionally been translated into large collec-
tions of incompatible and monolithic applications thus
obstructing the widespread usage of information tech-
nologies in classrooms [18]. This problem is even worse
when dealing with a particular type of Educational Soft-
ware: Computer Supported Collaborative Learning (CSCL)
applications. CSCL is an Instructional Technology re-
search paradigm based on socially oriented learning theo-
ries [14] that underline the influence of social interactions
as key learning mediators [8]. CSCL applications have to
include support for collaborative activities as well as to
offer the functionality desired by the set of potential ac-
tors that can participate in collaborative learning situa-
tions (teachers, students, and pedagogy and psychology
experts, among others). The effort involved in the devel-
opment of useful and powerful CSCL applications is only
justified if they can be applied to a large number of learn-
ing situations and if they can survive the evolution of
functional requirements and technological changes [17].
Therefore, CBSE appeared as an enabling technology for
the development of reusable, customizable, and integrated
CSCL software tools.

When dealing with reusability in Software Engineering,
and particularly in CBSE, one concept appears as funda-
mental: that of Component Frameworks [10]. A Component
Framework can be understood as a set of extensible soft-
ware components usable in a particular domain as well as a
collection of software design patterns that document their
use [4,6]. Components defined in a Framework can be
reused, customized and assembled with additional comp o-
nents provided by developers in order to obtain specific
applications. The availability of a Component Framework
for the CSCL domain would therefore imply a great step
towards the achievement of the aforementioned objectives
of reusable, integrated and customizable Collaborative
Learning software applications. Nevertheless, building a
Component Framework is not an easy task [5]. A Frame-

work developer must face different problems related to
both the particularities of the Framework domain and the
technologies used to support the derived components
[15]. One of the most important problems to take into ac-
count in this context is the identification and dimensioning
(i.e. level of granularity) of components. The fulfillment of
this task largely depends on how the key concepts and
principles of the domain of interest are understood by
software developers [2]. This is a case where a software
engineering problem (component reuse) is largely influ-
enced by a knowledge engineering problem (the under-
standing of the domain). In the CSCL domain, this problem
is particularly important due to the big separation among
abstractions used by experts in Collaborative Learning
(pedagogues, psychologists, education practitioners,…)
and those used by software developers. During the last
years the authors, within a multidisciplinary education and
technology group, have worked in a top-down conceptu-
alization of the Collaborative Learning domain by defining
the educational-telematic framework DELFOS [16] and in a
bottom-up approach aimed at the understanding of the
domain by receiving feedback from the field trials of sev-
eral specific CSCL applications developed by the group
[9]. Both approaches have not generated completely
satisfactory results for the objective of conceptually
bridging the Collaborative Learning and the Software
Development worlds. As a result, this paper proposes,
justifies and illustrates a novel approach to the
conceptualization of a part of the Collaborative Learning
domain as a first step for obtaining a complete Comp onent
Framework for the CSCL domain. The proposed approach

CSCL domain. The proposed approach consists of identi-
fying, studying and formalizing “Collaborative Learning
Patterns”: detailed descriptions of well-accepted types of
collaborative learning activities defined by Collaborative
Learning experts that can eventually be used by software
developers to identify software components applicable to
several types of comp onent-based CSCL applications.
Collaborative Learning Patterns can be understood as a
trade-off between the mentioned pure top-down and bot-
tom-up approached for making Collaborative Learning
concepts understandable by developers of software appli-
cations. The paper is structured as follows: section 2 mo-
tivates, defines, and illustrates with two examples the
concept of Collaborative Learning Pattern. Section 3
shows how Collaborative Learning Patterns should be
used by software developers and describes the authors’
experience developing a specific CSCL application. Finally,
section 4 summarizes the main conclusions derived from
the work presented in this paper and enumerates some
important future research issues.

2. Collaborative Learning Patterns

2.1. Motivation

Traditional efforts, shown in Figure 1, for establishing a

common ground among experts in the Collaborative Learn-
ing domain and software developers include both top-
down and bottom-up approaches.

COLLABORATIVE
LEARNING

DOMAIN

COMPONENT-
BASED SOFTWARE

DEVELOPMENT
DOMAIN

Collaborative
Learning Concepts,

Principles,
Theories...

CSCL
Applications

Bottom-Up Approach
(use of concrete

applications)

Top-Down Approach
(DELFOS,

Ontologies, …)

CL Best Practices

Types of CSCL
Applications

Influence

Restrict

Collaborative
Learning Patterns

(CLPs)

Reusable Software
Components

Software Patterns

CSCL Component Framework

TRADITIONAL APPROACH PROPOSED APPROACH
+abstraction level

+closer to
implementation level

?

Figure 1. Collaborative Learning Patterns as an alternative for establishing a common
ground between the Collaborative Learning domain and the software development field

Some of the most representative approaches in the top-
down category are CSCL conceptual frameworks and on-
tologies.

DELFOS (a Description of a tele-Educational Layered
Framework Oriented to Learning Situations) is a CSCL
conceptual framework developed by the authors [16].
DELFOS was defined in order to support the complex and
interdisciplinary development of applications in the CSCL
domain. It proposed a learning model, a generic architec-
ture for CSCL applications, and a development method
based on the principles of the participatory analysis and
iterative design approaches. The definition of these ele-
ments was performed from a holistic perspective, which
was very helpful for including important aspects of the
learning situations. However, it resulted to be a very
complex proposal for its use as a software development
methodology. Furthermore, it provided limited help in
terms of software reusability, flexibility and customiza-
tion.

Collaborative Learning Ontologies [3] try to offer a for-
mal shared conceptualization of the domain based on
specific theories. Current proposals only include incom-
plete views of the domain and they do not provide ways
of applying the ontological definitions to the support of
development efforts of CSCL applications in a practical
way.

On the other hand, bottom-up approaches are based on
the development of specific CSCL applications that aim at
extracting significant elements of the framework. However,
the authors experience with this approach [9] shows that
identification of reusable components is extremely difficult
as the developed applications are biased towards a speci-
fic learning problem. Also, it easily becomes evident that a
general and reusable formalization is necessary at the
domain level. Both facts confirm the problems encoun-
tered in the field of Component-Based Software Engineer-
ing [5].

Therefore, a new approach, also shown in Figure 1, has
been explored based on the use of Collaborative Learning
Patterns that will be described in the following subsection.

2.2. Definition

The term “Collaborative Learning Pattern” is derived

from the notion of “Collaboration Design Pattern” intro-
duced in [7] and defined as a way of describing “[…] best
practices in collaborative learning” used as “[…] a
shorthand to effectively communicate collaborative
activities, and provide building blocks for more complex
situations” in the CSCL field. The authors of [7] conclude
that their patterns offer “[…] real world examples that
can guide technical discussions (some times giving birth

to a software structure of the same name)” but they do
not provide clues about how this process could be possi-
ble.
 Our idea of “Collaborative Learning Patterns” (CLPs)
goes a step further in this sense. They can be understood
as a way of describing types of collaborative learning
activities easily understandable by software developers.
CLPs are identified and formalized by Collaborative Learn-
ing practitioners (mainly teachers) as well as validated by
pedagogy experts. They are intended to be used by soft-
ware developers in order to derive common requirements
for CSCL applications supporting collaborative learning
activities of the same type (i.e. activities compliant with
the same CLP). In spite of this final use of the CLPs, it is
important to point out that the contents of the CLPs them-
selves do not include any technical information: the types
of collaboration activities they describe could be realized
without the support of CSCL applications.

CLPs are represented according to a formalism, shown
in Table 1, that enlarges the one previously described for
“Collaboration Design Patterns” [7]. That table also shows
two examples of CLPs, drawn form a larger set that re-
sulted from our analysis, defining well-known practices in
Collaborative Learning: jigsaw and pyramid [13].

Table 1. Collaborative Learning Pattern structure and
its application to Jigsaw and Pyramid-like activities

Facet Explanation Example #1 Example #2

Name Name of the
CLP

Jigsaw Pyramid

Problem Learning
problem to be
solved by the
CLP

Complex problem
whose resolution
implies the handling
and/or collection of
information that can
be easily divided into
disjoint sets and that
can be used for the
resolution of inde-
pendent subproblems

Complex problem,
usually without a
specific solution, whose
resolution implies the
achievement of gradual
consensus among all the
participants

Example A real-world
learning
activity
suitable of
being struc-
tured accord-
ing to the CLP

Collaborative design
of a computing system
where the study of
each subsystem is
assigned to a particu-
lar participant

Collaborative proposal of
the design of a comput-
ing system where each
participant contributes
with a complete design
that is subsequently
compared with other
contributions and
consequently refined

Context Environment
type in which
the CLP could
be applied

Several small groups
facing the study of a
large amount of
information for the
resolution of the
same problem

Several participants
facing the collaborative
resolution of the same
problem

Solution Description
of the pro-
posal by the
CLP for
solving the
problem

Each participant in a
group (jigsaw group)
studies a particular
subproblem. The
participants of
different groups that
study the same
problem meet in an
“Expert Group” for

Each individual partici-
pant studies the problem
and proposes a solution.
Groups (usually pairs) of
participants compare and
discuss their proposals
and, finally, propose a
new share solution.
Those groups join in

exchanging ideas. At
last, jigsaw group
participants meet to
solve the whole
problem. Each par-
ticipant contributes
with its “expertise”

larger groups in order to
generate new agreed
proposal. At the end, all
the participants must
propose a final and
agreed solution

Actors Actors
involved in
the Collabora-
tive Learning
activity
described by
the CLP

• Teacher
• Learner
• Evaluator

• Teacher
• Learner
• Evaluator

Types of
Tasks

Types of
tasks, to-
gether with
their se-
quence,
performed by
the actors
involved in
the activity.
(NOTE: due to
space restric-
tions only
types of tasks
performed by
learner and
teacher are
shown)

Learner:
1. Access to the

information re-
lated with the
subproblem

2. Individual study
of the subproblem

3. Subproblem
discussion in the
experts group

4. Problem resolu-
tion in the jigsaw
group

5. Result proposi-
tion

6. Process self-
evaluation

Teacher:
1. Global problem

definition
2. Division of the

problem in sub-
problems

3. Creation of jigsaw
groups

4. Assignment of
subproblems

5. Provision of
useful information

6. Floor control
system establish-
ment

7. Decisions about
control of time

8. Activity progress
monitoring

9. Result evaluation

Learner:
1. Access to the infor-

mation related with
the problem

2. Individual study of
the problem

3. Individual solution
proposal

[REPEAT
4. Formation of groups
5. Group discussion
6. Common solution

proposal
] (until only one group
remains)
7. Process self-

evaluation
Teacher:

1. Global problem

definition
2. Provision of useful

information
3. Group dimensioning
4. Decisions about

control of time
5. Activity progress

monitoring
6. Result evaluation

Types
and
structure
of
Informa-
tion

Description
of the types
of informa-
tion identi-
fied in the
collaborative
activity and
how they are
related

• Input information
needed for global
problem resolu-
tion

• Partial informa-
tion assigned to
subproblems

• Subproblem
resolution pro-
posal

• Global problem
resolution pro-
posal

• Correct global
problem resolu-
tion (optional)

• Input information
needed for global
problem resolution

• Intermediate resolu-
tion proposals

• Global problem
resolution proposal

• Correct global
problem resolution
(optional)

Types
and
structure
of
Groups

Description of
the types of
groups of
learners
identified in
the collabora-
tive activity
and how they
are related

• Jigsaw groups
• Experts groups in

charge of subprob-
lems

• Growing pyramid
groups

3. From Collaborative Learning Patterns to
Software Design Patterns

The nature of the information provided by the defini-
tion of CLPs, as shown in the previous section, is suitable
for being used by software developers. The information a
CLP provides could be used as a source for the derivation
of common functional requirements for all CSCL applica-
tions devoted to the support of collaborative learning
activities of the type defined by the CLP. Obviously, the
use of CLPs would depend on the specific software devel-
opment methodology that is employed. As a way of illus-
trating these ideas, if a software development methodol-
ogy based on the Unified Process (UP) [1] is chosen, the
information provided by CLPs might be used as the basis
for the derivation of actors and use cases, the conceptual
model (also known as domain model), and the analysis of
the use cases during the iterations of the so-called “Incep-
tion Phase”. UP has been chosen for the illustration of the
usage of CLPs because it is a very common methodology
for the development of component-based software appli-
cations. Nevertheless it is important to point out that UP is
not the only choice for CLPs.

Figure 2 shows UML (Unified Modeling Language) use
case diagrams and class diagram representing use cases
and the conceptual modeling for a software application
that could eventually support a collaborative learning
activity of the type described by the jigsaw CLP defined in
Table 1. As it can be appreciated, the use case diagram
focuses its scope in the reflection of functionality needed
for supporting the tasks performed by the different actors
involved in the CLP. Although it is not shown here, these
use cases have an associated detailed description that
must be agreed with the CLP writers in order to check that
there is a common understanding of the details and impli-
cations of the functional requirements. On the other hand,
the conceptual or domain model reflects the types and the
structure of the information and groups described by the
CLP, as well as the interrelation among them. It can be
appreciated, for instance, how Jigsaw Group, and Expert
Group classes are associated to Global Problem and
Subproblem classes which, at the same time, maintain an
aggregation association between them.

After completing the UP inception phase using the in-
formation provided by CLPs, and using normal software
development techniques prescribed, in this example, by
UP, it is possible to obtain a software design architecture

for a jigsaw-like CSCL application. Figure 3 shows the
static view of such a potential architecture.

In the software design architecture shown in Figure 3 it
is possible to identify several candidate software comp o-
nents such as: Access Manager, Floor Control Manager,
Interaction Manager and so on. Of course, it is difficult to
prescribe a way of starting with a CLP definition and
reaching a specific software design for the corresponding

type of applications. In other words, different valid de-
signs can be obtained from the same CLP. Nevertheless,
our experience when developing CSCL applications indi-
cates that CLPs are a very useful tool during the first

stages of the development. Furthermore, software designs
that we have obtained have successfully been reused in
more than one application. This indicates that, by starting
with Collaborative Learning Patterns, it could eventually
be possible to obtain valid Architectural Software Patterns
(of course, once a proper number of applications based on
the same CLP have been developed and validated). This is
still an open research issue.

In terms of software reusability, the implications from
the presented approach are very important: the use of
CLPs help software developers to understand the require-
ments and involved concepts of specific types of CSCL

Problem and Subproblem Definition
and Assignment

Group Management

Time Control

Floor Control System
establishment

Information Provision
Activity Progress Monitoring

Teacher

Result Evaluation

Application Access

Individual Work Support

Information Access

Experts Group Work Support

Jigsaw Group Work Support

Result Proposition

Pupil

Process self- evaluation Support

Global Problem

Global Information

Jigsaw Group

resolves
consults

Solution
correct

0..1 0..1 correct
proposed proposed

Partial Information
0..*

Experts Group

consults

Teacher

poses
provides 0..*

creates and
supervise

0..*

evaluates
supervises

User

Subproblem
0..*

defines
and

assigns
resolves

Pupil
0..*

is assigned
Group

0..*

Evaluator

0..*

0..*

monitors
interactions

0..*

0..*

0..*

0..*
0..*

0..*

0..*

0..*

Figure 2 UML use case diagram and conceptual class diagram derived from the jigsaw CLP

Administrator
User

Profile
0..1 0..1

Access Manager

manages access consults

Evaluator

Solution Global Problem
correct

0..1 0..1 correct

Teacher Pupil

Global Information

Subproblem
0..*

is assigned
Group

0..*

Experts Group
resolves

Jigsaw Group

proposed proposed
resolves

consults

Application Manag er

Partial Information
0..*

consults

DATA MODEL

Evaluation Manager

Interaction
monitors Interactions Manager

manages
Floor Management

Manager
0..1

0..1
consults

consults
0..1

0..1

manages activities
creates and manages

manages access

0..*

0..*

0..*

SERVER

Figure 3. UML class diagram showing the static view of a
potential architecture of a CSCL application that supports a

jigsaw-like collaborative learning activity

applications. Therefore, it is much easier to identify com-
mon software components for those types of application.
These common components are potentially more reusable
that those obtained when developing a particular CSCL
application not bound to a CLP. This fact facilitates the
progressive fulfillment of the original goal of obtaining a
component framework for the CSCL domain.

In terms of usability and meaningfulness from the
point of view of Cognitive and Learning Sciences experts,
the CSCL applications developed by starting from CLPs
reflect solid Collaborative Learning principles, while they
also comply with best practices widely understood by
education practitioners. Although CLPs have a very lim-
ited scope when compared with the great amount of con-
cepts and theories that belong to the Collaborative Learn-
ing field, CLPs and their proposed use by software engi-
neers provide a realistic path to the use of a subset of
concepts of certain importance. The approach described in
this paper is based on the experience of our group in the
development of CSCL applications during the last decade.
It has been applied, for example, to the development of a
component-based CSCL application devoted to the sup-
port of a course on computer design for Telecommunica-
tions Engineers in our University. That application, called
eLAO, supports several collaborative learning activities
that belong to both the jigsaw and the pyramid CLPs. In
this case, we have been able to use the proposed ap-
proach to a fusion of two different CLPs, showing that
reusability is not necessarily reduced to applications be-
longing to the same CLP. Reusability of the software com-
ponents developed for eLAO is currently being evaluated
in the construction of other CSCL applications based on
the same CLPs. Preliminary conclusions indicate that com-
ponents that support the teacher’s tasks (e.g., student and
group management, task assignment,…) and those com-
ponents related to interaction and information handling
(e.g., floor management, interaction management, …) are
the most reusable in applications based on a same CLP.

4. Conclusions and Future Work

This paper has introduced and illustrated the concept
of Collaborative Learning Pattern (CLP) as a promising
approach for establishing a common ground among ex-
perts and practitioners from Cognitive and Learning
Sciences and software developers of CSCL applications.
CLPs can be used by software developers during the first
stages of software development methodologies in order to
understand common functional requirements of different
types of CSCL applications. In subsequent stages, they
can also be used for the identification of common software

components for CSCL applications that support collabora-
tive learning activities compliant with a particular or a
combination of existing CLPs. These identified comp o-
nents will eventually belong to a general CSCL component
framework for facilitating reusability, flexibility and cus-
tomization of CSCL software. The paper has also pre-
sented two examples of CLP definition and an example of
how those particular CLPs were used by software devel-
opers in order to identify software comp onents applicable
to a particular component-based CSCL application. An-
other CLP (simulation) has also been defined (although
not presented here due to space restrictions) and the
combination of two CLPs has been successfully employed
during the development of a specific CSCL application.

This paper has presented an open research effort that
still has to face several challenges. Currently, the im-
provement in software component reusability obtained by
the CLP approach is being evaluated. Also, the CLP defini-
tion formalism is being discussed with learning experts in
order to include more useful information for software de-
velopers. An evaluation of the CLP approach from the
viewpoint of traditional knowledge engineering tech-
niques such as CommonKADS is also in progress. At the
same time, new CLPs are being defined in order to find
potential limitations of the approach. A very interesting
research issue under study is the identification of ways of
achieving an automatic or semiautomatic translation of
CLPs into software development artifacts. In other words,
we are currently trying to propose the conditions and the
steps of a methodology that would allow to derive Soft-
ware Design Patterns (or the selection of existing ones)
from Collaborative Learning Patterns. Another possible
improvement of the CLP approach deals with the introduc-
tion of specific information about the types of interactions
to register and analyze in order to support coaching and
evaluation aspects, of major importance in the CSCL field
[12].

Acknowledgements

The authors want to acknowledge the contributions
from other members of the EMIC Group (Education, Me-
dia, Information, and Culture), specially J.L. Barrio, B.
Rubia, D. Hernández, P. Orozco, and R. Anguita. This work
was partially financed by the Autonomous Government of
Castilla and León, Spain (project VA117/01), and the Min-
istry of Science and Technology, Spain (projects TIC2000-
1054 and TIC-2002-04258-C3-02).

References

[1] Arlow, J. and Neustadt, I. UML and the Unified
Process: Practical Object-Oriented Analysis and
Design, Addison Wesley Professional, 2001.

[2] Askit, M., Marcelloni, F., and Tekinerdogan, B.,
Developing Object-Oriented Frameworks Using
Domain Models ACM Computing Surveys, vol.
32, 2000.

[3] Barros, B., Verdejo, M. F., Read, T., and Mizoguchi,
R., "Applications of a Collaborative Learning On-
tology," Proceedings of the Mexican International
Conference on Artificial Intelligence (MICAI'02),
2002.

[4] Brugali, D. and Sycara, K., Frameworks and Pattern
Languages: an Intriguing Relationship ACM Com-
puting Surveys, vol. 42, 2000.

[5] Carey, J. and Carlson, B., Lessons learned becom-
ing a framework developer Software Practice and
Experience, vol. 43, pp. 789-800, 2002.

[6] Crnkovic, I., Hnich, B., Jonsson, T., and Kiziltan, Z.,
Specification, Implementation, and Deployment of
Components Communications of the ACM, vol.
45, pp. 35-40, Oct, 2002.

[7] DiGiano, C., Yarnall, L., Patton, C., Roschelle, J.,
Tatar, D., and Manley, M., "Collaboration design
patterns: conceptual tools for planning for the wire-
less classroom," Proceedings of the IEEE Interna-
tional Workshop on Wireless and Mobile Tech-
nologies in Education (WMTE'02), 2002.

[8] Dillenbourg, P. Collaborative Learning: Cogni-
tive and Computational Approaches, Oxford, UK:
Elsevier Science, 1999.

[9] Dimitriadis, Y. A., Asensio, J. I., Toquero, J., Esté-
banez, L., Martín, T. A., and Martínez, A., "To-
wards a Software Components System for the
Computer-Supported Collaborative Learning Do-
main (in spanish)," Proceedings of the Spanish In-
formatics and Telecommunications Conference
(SIT'02), Seville, Spain, 2002.

[10] Fach, P. W., Design Reuse through Frameworks
and Patterns IEEE Software, pp. 71-76, Sep, 2001.

[11] Hopkins, J., Component Primer Communications
of the ACM, vol. 43, pp. 27-30, Oct, 2000.

[12] Jermann, P., Soller, A., and Muehlenbrock, M.,
"From Mirroring to Guiding: A Review of the State
of the Art Technology for Supporting Collabora-
tive Learning," Proceedings of ECSCL 2001, 2001.

[13] Johnson, D. W. and Johnson, R. T. Learning to-
gether and alone: cooperative, competitive and
individualistic learning, Allyn and Bacon, 1999.

[14] Koschmann, T. Paradigm shift and instructional
technology. In: CSCL: Theory and Practice of an
emerging paradigm, ed. Koshmann, T. Lawrence

Erlbaum, 1996. pp. 1-23.
[15] Mili, H., Fayad, M., Brugali, D., Hamu, D., and Dori,

D., Enterprise frameworks: issues and research di-
rections Software Practice and Experience, vol.
32, pp. 801-831, 2002.

[16] Osuna, C. and Dimitriadis, Y., "A framework for the
development of educational collaborative applica-
tions based on social constructivism," Proceed-
ings of the CYTED RITOS International Workshop
on Groupware (CRIWG'99), 1999.

[17] Roschelle, J., DiGiano, C., Koutlis, M., Repenning,
A., Phillips, J., Jackiw, N., and Suthers, D., Devel-
oping Educational Software Components Com-
puter, pp. 50-58, Sep, 1999.

[18] Roschelle, J., Kaput, J., Stroup, W., and Kahn, T.
M., Scalable integration of educational software:
exploring the promise of comp onent architectures
Journal of Interactive Media in Education, vol.
98, Oct, 1998.

