
Semantic Web 0 (0) 1–16 1
IOS Press

Clover Quiz: a trivia game powered by
DBpedia
Editor(s): Jens Lehmann, University of Bonn, Germany
Solicited review(s): Vinu E. V, University of Luxembourg, Luxembourg; Dhaval Thakker, University of Bradford, United
Kingdom; Agis Papantoniou, National Technical University of Athens, Greece

Guillermo Vega-Gorgojo a,b,c,∗,∗∗

a Don Naipe AS, Oslo, Norway
b Department of Informatics, University of Oslo, Norway
c School of Telecommunications Engineering, Universidad de Valladolid, Spain

AbstractDBpedia is a large-scale and multilingual knowledge base generated by extracting structured data from
Wikipedia. There have been several attempts to use DBpedia to generate questions for trivia games, but these
initiatives have not succeeded to produce large, varied, and entertaining question sets. Moreover, latency is too
high for an interactive game if questions are created by submitting live queries to the public DBpedia endpoint.
These limitations are addressed in Clover Quiz, a turn-based multiplayer trivia game for Android devices with more
than 200K multiple choice questions (in English and Spanish) about different domains generated out of DBpedia.
Questions are created off-line through a data extraction pipeline and a versatile template-based mechanism. A
back-end server manages the question set and the associated images, while a mobile app has been developed and
released in Google Play. The game is available free of charge and has been downloaded by more than 5K users
since the game was released in March 2017. Players have answered more than 614K questions and the overall rating
of the game is 4.3 out of 5.0. Therefore, Clover Quiz demonstrates the advantages of semantic technologies for
collecting data and automating the generation of multiple choice questions in a scalable way.

Keywords: Knowledge extraction, DBpedia, trivia game, multiple choice question, mobile app

1. Introduction

Wikipedia is the most widely used encyclopedia
and the result of a truly collaborative content edi-
tion process.1 There are 295 editions of Wikipedia
corresponding to different languages, although the
English Wikipedia is the largest with more than

*Corresponding author. E-mail: guiveg@ifi.uio.no
**This work has been partially funded by the Norwe-

gian Research Council through the SIRIUS innovation cen-
ter (NFR 237898) and BIGMED (IKT 259055) project, as
well as by the Spanish State Research Agengy (AEI) and
the European Regional Development Fund, under project
grants SmartLET (TIN2017-85179-C3-2-R) and RESET
(TIN2014-53199-C3-2-R).

1https://www.wikipedia.org/

5.4 million entries. Articles do not only include free
text, but also multimedia content and different
types of structured data like so-called infoboxes
and category declarations. Wikipedia has an im-
pressive breadth of topical coverage that includes
persons, places, organisations, and creative works.
The social and cultural impact of Wikipedia is
quite significant: it is the fifth most popular web-
site according to Alexa,2 while Wikipedia’s con-
tent is extensively used in education, journalism,
and even court cases.3 Despite the vastness and
richness of Wikipedia, its content is only accessible

2http://www.alexa.com/topsites
3https://en.wikipedia.org/wiki/Wikipedia#

Cultural_impact

1570-0844/0-1900/$35.00 c© 0 – IOS Press and the authors. All rights reserved

https://www.wikipedia.org/
http://www.alexa.com/topsites
https://en.wikipedia.org/wiki/Wikipedia#Cultural_impact
https://en.wikipedia.org/wiki/Wikipedia#Cultural_impact

2 Guillermo Vega-Gorgojo / Clover Quiz: a trivia game powered by DBpedia

through browsing and free-text searching. To over-
come this limitation, the DBpedia project builds
a knowledge base by extracting structured data
from the different Wikipedias [15]. As a result, the
latest release of the English DBpedia (2016-10) de-
scribes 6.6 million entities and contains 1.7 billion
triples [21].
DBpedia is the prototypical cross-domain dataset

in the Web of Data [10, ch. 3] and is employed
for many purposes such as entity disambiguation
in natural language processing [14]. An appeal-
ing application case is the generation of ques-
tions for trivia games from DBpedia. Some pre-
liminary attempts can be found in the litera-
ture [5,12,18,19,29], but these initiatives have
fallen short due to simple question generation
schemes that are not able to produce varied, large,
and entertaining questions. Specifically, supported
question types are rather limited, reported sizes
of the generated question sets are relative low (in
the range of thousands), and no user base seems
to exist. Moreover, some of these works create the
questions by submitting live queries to the public
DBpedia endpoint, hence latency is too high for
an interactive trivia game, as reported in [18].
The hypothesis of this work is that a semi-

automatic approach can produce varied, numer-
ous, and high-quality questions from DBpedia. In
a first stage, a human editor can guide the extrac-
tion of data by specifying the classes, literals and
relations between classes of interest for a partic-
ular domain. In a second stage, the generation of
questions is driven by a flexible template author-
ing process, allowing high control in the selection
of the entity sets and ample variety in the formula-
tion of question types. Importantly, the produced
questions are production-ready, without requiring
any kind of post-processing for readability or pre-
sentation purposes. The generated questions can
then be hosted in a back-end server that meets the
latency requirements of an interactive trivia game.
The target case is Clover Quiz, a turn-based mul-
tiplayer trivia game for Android devices in which
two players compete over a clover-shaped board by
answering multiple choice questions from different
domains. This paper presents the outcomes of this
project, including the mobile app and actual usage
information of the players that have downloaded
the game through Google Play.
The rest of the paper is organized as follows:

Section 2 presents the game concept of Clover

Quiz. Section 3 describes the data extraction
pipeline, while Section 4 explains the question gen-
eration process. The design of the back-end server
and the mobile app is addressed in Section 5.
Section 6 deals with the actual usage of Clover
Quiz, including user feedback and latency mea-
sures. Next, Section 7 draws some lessons learned.
The paper ends with a discussion and future work
lines in Section 8.

2. Game concept

Clover Quiz is conceived as a turn-based mul-
tiplayer trivia game for Android devices. In an
online match, two players compete over a clover-
shaped board. Each player has to obtain the eight
wedges in the board by answering questions on
different domains. The player with the floor can
choose any of the remaining wedges and then re-
spond to a question on the corresponding domain.
If the answer is correct, the player gets the wedge
and can continue playing, but if it is incorrect, the
floor goes to the opponent. Once a player obtains
the eight wedges, there is a duel in which each
player has to answer the same five questions in a
row. The match is over if the player with the eight
wedges wins the duel. In other case, this player
loses all the wedges and the match continues until
there is a duel winner with the eight wedges.

The target audience of Clover Quiz corresponds
to casual game players with an Android phone, in
the age range of 18-54, high school/university level
education, and Spanish- or English-speaking. Im-
portantly, target users are not supposed to know
anything about the Semantic Web and do not re-
quire a background on Computer Science or In-
formation Technology. Since the game is purposed
for mobile devices, user typing should be limited
as much as possible. For this reason, Clover Quiz
employs multiple choice questions with four op-
tions; note that this is also the solution adopted by
other mobile trivia games like QuizUp4 and Trivia
Crack.5

Clover Quiz includes questions from the follow-
ing domains: Animals, Arts, Books, Cinema, Ge-

4https://play.google.com/store/apps/details?id=
com.quizup.core

5https://play.google.com/store/apps/details?id=
com.etermax.preguntados.lite

https://play.google.com/store/apps/details?id=com.quizup.core
https://play.google.com/store/apps/details?id=com.quizup.core
https://play.google.com/store/apps/details?id=com.etermax.preguntados.lite
https://play.google.com/store/apps/details?id=com.etermax.preguntados.lite

Guillermo Vega-Gorgojo / Clover Quiz: a trivia game powered by DBpedia 3

ography, Music, and Technology – all of them have
a good coverage in DBpedia [15] and are arguably
of interest to the general public. About the gener-
ation of questions, an important design decision is
whether to prepare the questions beforehand or to
submit live queries to DBpedia. The latter option
was discarded due to the complexity of the ques-
tion generation process and to the stringent re-
quirements of interactive applications (like Clover
Quiz) that cannot be met by the public SPARQL
endpoint over the DBpedia dataset – queries to
the public DBpedia endpoint can easily take sev-
eral seconds and periods of unavailability are rela-
tively common, according to the tests carried out
in the inception phase of the game. Instead, the
question set of Clover Quiz is generated in advance
and deployed in a back-end server. This architec-
ture corresponds to the crawling pattern employed
in some Semantic Web applications [10, ch. 6].

3. Data extraction

The goal of the extraction phase is to gather
the data of interest from a knowledge source,
e.g. DBpedia, and produce a consolidated dataset
that can be easily exploited to generate multi-
ple choice questions. This is accomplished through
a series of steps that are graphically depicted in
Figure 1. The question set will then be produced
programmatically through and off-line process; for
this reason the proposed workflow is supported
with a collection of scripts coded in Javascript,
while all generated input and output files are in
JSON format [6]. In the first stage, a human ed-
itor prepares a Domain specification file with the
instructions for retrieving data. Such a file con-
tains a parameters object with the target endpoint
(in this case, the URI of the English DBpedia
public endpoint6), the maximum number of con-
current requests, the languages to gather labels,
the value of the LIMIT keyword to be used in
SPARQL queries, and the time lapse before saving
the progress.
The specification file includes the classes to

gather entities in a domain of interest, e.g. Museum,
Painting, or Painter in Arts. In some cases, there
is a one-to-one correspondence between the in-

6http://dbpedia.org/sparql

Figure 1. Overview of the data extraction process.

tended concept and a class in the DBpedia on-
tology, so the editor only has to set the class
in the data source, e.g. dbo:Museum. Other sit-
uations are more involved, requiring the speci-
fication of a SPARQL query. This is the case
with Painting: most of the paintings in DB-
pedia are of type dbo:Artwork, but entities of
this type also include sculptures among other
things. In addition, there are some paintings like
dbr:Sistine_Chapel_ceiling which are not of
type dbo:Artwork. Nevertheless, paintings in DB-
pedia are annotated with a category narrower
than dbc:Paintings through the dct:subject
property. Thus, the SPARQL query in Listing 1
aims to retrieve entities annotated with a subcat-
egory of dbc:Paintings and which are of type
dbo:Artwork or at least have an author/artist or
are in a museum.

Listing 1: SPARQL query for retrieving the enti-
ties of the Painting class
select distinct ?X where {
?X dct:subject ?S .
?S skos:broader{,4} dbc:Paintings .
{ {?X a dbo:Artwork .}

UNION {?X (dbo:author | dbp:author) [] . }
UNION {?X (dbo:artist | dbp:artist) [] . }
UNION {?X (dbo:museum | dbp:museum) [] . }
UNION {[] dbp:works ?X .} } . }

A domain specification file also identifies the lit-
erals to be extracted for the entities of a target
class – like labels, years, or image URLs – by pro-
viding the corresponding datatype properties used
in DBpedia. In addition, relations between entities
of different classes are also defined; simple cases
just involve an object property, e.g. dct:subject
for getting the Wikipedia categories of Painting.
Unfortunately, the structure of DBpedia is not
very regular and it is common to find alternative
properties with similar meaning. As a result, more
complicated queries are frequently needed to ex-
tract relations between DBpedia entities – see for
example the query in Listing 2. This SPARQL
query is purposed for gathering the city location of
a Museum even if different properties are employed
to annotate the corresponding entities.

http://dbpedia.org/sparql

4 Guillermo Vega-Gorgojo / Clover Quiz: a trivia game powered by DBpedia

Listing 2: SPARQL query for retrieving the cities
where museums are located
select distinct ?entA ?entB where {
?entA a dbo:Museum .
?entB a dbo:Settlement .
?entA (dbo:location | dbp:location |

dbo:city | dbp:city){1,3} ?entB . }

In the Data gathering stage, a script takes a
specification file as input and queries DBpedia to
retrieve the data available of the target domain.
Essentially, the script gathers the entities belong-
ing to each class, their literals, and their relations
with other entities, as defined in the domain spec-
ification file. For every DBpedia entity found, the
script also obtains the number of triples with that
individual as subject (outlinks) and the number
of triples with that individual as object (inlinks)
– these measures are employed to estimate the
popularity of an individual in the question gener-
ation phase (see Section 4). All queries are pagi-
nated using the LIMIT and OFFSET SPARQL
keywords, while a parameter restricts the number
of concurrent queries sent to the endpoint. Impor-
tantly, the script runs in an incremental way, sav-
ing the work in case of errors such as a tempo-
ral unavailability of DBpedia. The output of this
stage is a file with a JSON object for every entity
found, e.g. “The Surrender of Breda” in Listing 3.
The snippet in Listing 3 includes the URI of the

entity, the collected literal values, the outlinks
and inlinks, and the relations to entities from
other classes. The last item, painting_categories,
corresponds to the list of Wikipedia categories
that the source Wikipedia article is endowed.
Wikipedia contributors annotate articles with
suitable categories that are organised into a hier-
archy that reflects the notion of “being a subcate-
gory of” [4]. Wikipedia categories represent a pre-
cious knowledge resource that can be extremely
powerful for adding variety and uniqueness to the
question set in Clover Quiz. In this running ex-
ample, the category hierarchy can be exploited to
gather the year where “The Surrender of Breda”
was completed and other relevant facts such as
being a Spanish painting, with animals, and from
the Baroque period that are derived from broader
categories. To extract these facts, the data extrac-
tion pipeline includes a Category annotation stage.
This involves the authoring of a Category anno-
tation file in which a set of Wikipedia categories
of interest are specified for the target classes, e.g.

dbc:Baroque_paintings for the Painting class.
A script takes as input this file and prepares a
SPARQL query for gathering the entities of ev-
ery category of interest. Listing 4 shows the query
prepared for obtaining Baroque paintings.

Listing 4: SPARQL query for retrieving Baroque
paintings in the category annotation stage
select distinct ?X where {
?X dct:subject ?S .
?S skos:broader{,4} dbc:Paintings .
{ {?X a dbo:Artwork .}

UNION {?X (dbo:author | dbp:author) [] . }
UNION {?X (dbo:artist | dbp:artist) [] . }
UNION {?X (dbo:museum | dbp:museum) [] . }
UNION {[] dbp:works ?X .} } .

?X dct:subject/skos:broader{,4} dbc:Baroque_paintings . }

This query is based on the one in Listing 1 (cor-
responding to the Painting class); the only addi-
tion is the last property path pattern that includes
the category of interest, i.e. dbc:Baroque_paintings.
Since Wikipedia categories do not behave as a
strict taxonomy, a maximum category depth pa-
rameter sets a boundary to limit undesired im-
plications. The default value is four, reflecting a
trade-off between coverage and strict taxonomy
behaviour. Nevertheless, this parameter can be
adjusted per case if necessary. In the example
above, “The Surrender of Breda” is annotated
as Baroque_paintings because dbc:Velazquez_
paintings_in_the_Museo_del_Prado is a sub-
category of dbc:Baroque_paintings. The ob-
tained annotations are added to the corresponding
JSON object, e.g. Listing 5 shows all the annota-
tions made for the running example.

Listing 5: Annotations added to the JSON object
in Listing 3 after the data annotation stage
"year": 1634,
"Baroque_paintings": true,
"Spanish_paintings": true,
"War_paintings": true,
"Animals_in_art": true

Table 1 gives some figures about the number of
classes specified, the number of entities extracted
from DBpedia, and the size of the annotated data
files for each domain in Clover Quiz.

4. Question generation

A multiple choice question consists of a stem
(the question), a key (the correct answer), and

Guillermo Vega-Gorgojo / Clover Quiz: a trivia game powered by DBpedia 5

Listing 3: JSON object generated in the data gathering stage for a sample entity
{ "uri": "http://dbpedia.org/resource/The_Surrender_of_Breda",
"label": [{"es": "La rendición de Breda"}, {"en": "The Surrender of Breda"}],
"image": "http://en.wikipedia.org/wiki/Special:FilePath/Velazquez-The_Surrender_of_Breda.jpg",
"outlinks": "85",
"inlinks": "2",
"painter": ["http://dbpedia.org/resource/Diego_Velázquez"],
"museum": ["http://dbpedia.org/resource/Museo_del_Prado"],
"painting_categories": ["http://dbpedia.org/resource/Category:1634_paintings",

"http://dbpedia.org/resource/Category:Velazquez_paintings_in_the_Museo_del_Prado",
"http://dbpedia.org/resource/Category:War_paintings",
"http://dbpedia.org/resource/Category:Horses_in_art"] }

Table 1
Summary of the data extraction process for the different
domains

Animals Arts Books Cinema Geo Music Tech TOTAL

of classes 6 22 9 10 19 17 18 101
of entities 82,874 223,022 141,621 353,361 251,927 349,443 162,941 1,565,189
Annotated data (MB) 67 108 79 236 122 202 115 929

distractors (a set of incorrect, yet plausible, an-
swers) [2]. In Clover Quiz, the challenge is to pro-
duce numerous, varied, and entertaining questions
in a scalable way. Moreover, a question difficulty
estimator is required to match the questions to
the players’ skills during the game – intuitively,
novice players should get easy questions, while
experienced players should get more challenging
questions as they progress through the game. To
comply with these requirements, a template-based
question generator is devised. It consists of a script
that takes as input a list of question templates and
an annotated data file of a domain, as produced at
the end on the data extraction pipeline (see Sec-
tion 3).
The question generator supports different tem-

plate types in order to allow the creation of var-
ied questions; Table 2 describes the nine template
types with illustrating examples. The first seven
template types only involve entities from a class:
Image relies on the availability of an image in
the target entity set; Boolean, Boolean negative,
and Group exploit category annotations found in
the extracted entities; Date uses a date property;
Greatest, and Numeric employ a numeric property.
The latter two template types (Relation and Re-
lation negative) connect entities from two classes.
A question template is just a JSON object with

a set of key-values, e.g. Listing 6. Each template

includes its own multilingual stem template (see
the question field in Listing 6). Replacement of
entity labels can be easily added to a stem tem-
plate such as the example provided in Listing 7.
In addition, regular expressions can be defined in
a question template to perform fine-grained text
transformations; these are especially useful with
articles in Spanish since they vary with gender
and number (this tends to be easier in English
with the article “the”). The core part of a tem-
plate is the key class that defines the entities in
the annotated data file to which the template ap-
plies; in Listing 6, target entities are members of
the Painting class and have to include the follow-
ing JSON keys: image, Baroque_paintings, and
Animals_in_art. A template can also specify a
min_score to filter out those candidates with a
lower popularity score – this is computed with this
formula: pop_score = outlinks + 10 ∗ inlinks.7
Inspired by the PageRank algorithm [20], the ra-
tionale of the employed popularity score is to dif-
ferentiate well-known entities from obscure ones
(note that the DBpedia PageRank [25] could have

7outlinks and inlinks were obtained in the data ex-
traction pipeline (see Section 3). Note that outlinks aggre-
gates literal triples and outgoing RDF links, while inlinks
only counts incoming RDF links; inlinks is multiplied by
a factor of 10 in pop_score to stress its importance.

6 Guillermo Vega-Gorgojo / Clover Quiz: a trivia game powered by DBpedia

Table 2
Supported question templates

Template Description

Image Present an image of an entity and ask about its name
Stem: Which is the painting of the image? (include image)

Example: Key: label of a painting
Distractors: labels of other paintings in the same set

Boolean Ask about an entity with a particular boolean property
Stem: Which is the modernist building? (optional image)

Example: Key: label of a modernist building
Distractors: labels of other buildings in the same set which are not modernist

Boolean negative Ask about an entity without a particular boolean property
Stem: Which is NOT an Ancient Greek sculptor? (optional image)

Example: Key: label of a sculptor which is not from Ancient Greece
Distractors: labels of Ancient Greek sculptors in the same set

Group Ask about a particular boolean property of an entity and present a group of options
Stem: Which is the artistic style of the painter {{painter.label}}? (optional image)

Example: Key: label of the artistic style of the mentioned painter, e.g. Baroque
Distractors: labels of other artistic styles, e.g. Gothic, Renaissance, Mannerist, Romantic

Date Ask about a date property of an entity
Stem: When was {{painter.label}} born? (optional image)

Example: Key: mentioned painter’s year of birth
Distractors: other years (longer intervals if the key date is distant to present time)

Greatest Ask about the entity with the greatest numeric property of the presented options
Stem: Which country has the largest population? (optional image)

Example: Key: label of the country with the largest population of the presented options
Distractors: other countries in the set with fewer population (discard those with populations too
close or too far from the key)

Numeric Ask about a numeric property of an entity
Stem: Which is the population of {{city.label}}? (optional image)

Example: Key: population of the mentioned city
Distractors: populations of other cities in the same set (discard those too close or too far from the
key)

Relation Ask about an entity of classA related to an entity of classB
Stem: Who is the painter of “{{painting.label}}”? (optional image of the painter or the painting)

Example: Key: label of the painter which authored the mentioned painting
Distractors: labels of other paintings in the same set that did not author the mentioned painting

Relation negative Ask about an entity of classA not related to an entity of classB
Stem: Which castle is NOT in {{country.label}}? (optional image of the castle or the country)

Example: Key: label of a castle in a different country
Distractors: labels of castles in the same set which are in the mentioned country

Guillermo Vega-Gorgojo / Clover Quiz: a trivia game powered by DBpedia 7

been used as an alternative to the proposed pop-
ularity score). Concerning the rest of the items in
the template, image_prop identifies the JSON key
with the image URL, topic is employed for clas-
sification purposes, and dif_level is a subjective
rating of the difficulty of the questions generated
with a template – ranging from 0 (very easy) to
10 (very difficult).

Listing 6: Example of an Image single class ques-
tion template
{ "question": [{"en": "Which is the name of this painting

with animals?"},
{"es": "¿Cuál es el nombre del cuadro con animales
de la imagen?"}],

"class": "Painting.image.Baroque_paintings.Animals_in_art",
"min_score": 50,
"image_prop": "image",
"topic": ["baroque"],
"dif_level": 1 }

When the template in Listing 6 is evaluated,
the question generator first obtains the set of
paintings that comply with the requirements, e.g.
“The Surrender of Breda”. It will then generate
a question for each occurrence by getting the im-
age URL (to support the question) and the label
of the painting (this will be the correct answer).
Finally, the script will prepare three lists of dis-
tractors that correspond to distinct difficulty lev-
els. This is performed by taking a random sam-
ple of 50 paintings in the same set, estimating
the similarity of each element to the correct an-
swer, discarding the less similar distractors, and
finally preparing the three lists. Note that a ques-
tion is more difficult if the distractors are closer
to the correct answer [3], so similarity is com-
puted with a measure based on Jaccard’s coeffi-
cient [13] that is defined for every class by pro-
viding the array keys, e.g. painting_categories,
boolean keys, e.g. Baroque_paintings, and date-
based keys, e.g. year, of the target entities. This
way, Figure 2(left) shows the question created with
the template above when applied to “The Sur-
render of Breda” painting. Variations of this tem-
plate can be created very easily, e.g. switching
from Baroque to Renaissance paintings, or from
animal to still life paintings.
All template types have a similar structure, al-

though double class templates are slightly differ-
ent. Listing 7 shows the template employed to gen-
erate the question in Figure 2(right). This tem-
plate involves two classes (Museum and Country)

connected through the property country. The
stem refers to an entity of type Museum (classA),
while answers are of type Country (classB) – note
that the flow goes from classA to classB, so the
template is not inverse. Since a museum can only
be located in one country, the property country is
annotated as functional in the template – this al-
lows the question generator to silently discard mu-
seum entities with several country locations (due
to wrong annotations in DBpedia). The rest of el-
ements in the template are similar to the ones in
Listing 6. Again, it is very easy to prepare varia-
tions of this template, e.g. reversing the question
flow and asking about the museum (classA) lo-
cated in a specific country (classB) – this new
template will thus be inverse. Figure 3 shows ad-
ditional questions from non-Arts domains.

Listing 7: Example of a Relation double class ques-
tion template
{ "question": [{"en": "Where is the {{classA.label}}?"},

{"es": "¿Dónde está el {{classA.label}}?"}],
"classA": "Museum.image",
"classB": "Country.Member_states_of_the_United_Nations",
"prop": "country",
"inverse": false,
"functional": true,
"min_scoreA": 300,
"min_scoreB": 300,
"image_propA": "image",
"topic": ["museums"],
"dif_level": 0 }

After creating the questions associated to a tem-
plate, the script computes an estimator of the
questions’ difficulty. It relies on the popularity
of the involved entities (see pop_score above) to
assign a within-template difficulty score. In this
way, a question about a popular entity is con-
sidered easier than a question constructed with
the same template about a less popular entity. In
addition, the proposed question difficulty estima-
tor provides a between-template difficulty correc-
tion, e.g. a question about the completion year of
a painting is arguably more difficult than asking
the name of the same painting, so the dif_level
(see the description of this metric above) of the
latter template should be higher. The template
author is thus in charge of assigning an appro-
priate dif_level for a question template. Ques-
tion difficulty is further tuned through the use of
three lists of distractors, as described above. The
“hard list” contains distractors closer to the ques-
tion key, while the “easy list” includes more dis-

8 Guillermo Vega-Gorgojo / Clover Quiz: a trivia game powered by DBpedia

Figure 2. Sample questions from the Arts domain obtained with the mobile app of Clover Quiz. The distractors correspond
to the “easy list” – this is especially evident in the second example that includes countries quite dissimilar to France, i.e.
non-members of the EU, in different continents, non-French speaking, and so on.

similar distractors. During the game, a player will
get distractors from the list that match her exper-
tise in a given topic, thus allowing more balanced
games between two participants with disparate ex-
pertise levels. With the computed difficulty esti-
mator, questions are then sorted and unique iden-
tifiers are given to facilitate their retrieval during
the game.
Table 3 presents some aggregated figures of the

question set generated for Clover Quiz. The over-
all process consisted on the creation of several
“meta-templates” for every domain (20 to 50, typ-
ically) and then preparing the specific templates,
e.g. Listings 6 and 7. The rationale is to produce
more cohesive questions related to specific topics
(like Romanesque, Gothic, Renaissance, Baroque,
etc. in Arts) by partitioning the space in smaller
and more coherent sets. The downside is that more
templates are needed, although the required effort
was kept low due to the massive use of copy&paste
from the “meta-templates”.

5. Back-end sever and mobile app

After generating the question set of Clover Quiz,
the next step is the system design. Figure 4 out-
lines the overall architecture, split into the mobile
app and the back-end server. This separation is
purposed to keep the mobile app as lightweight as
possible, while the server is in charge of delivering
the questions and associated images – note that
questions in Clover Quiz are supported with more
than 37K low-resolution images, totalling 1.12 GB.
To simplify the back-end, a key design decision was
to embrace the JSON format to avoid data trans-
formations of the question set, already in JSON.
Due to this, a MongoDB database is employed
– MongoDB is a scalable and efficient document-
based NOSQL system that natively uses JSON for
storage.8 The question set is thus stored as a col-
lection of documents in MongoDB. Each question
is associated with a statistics document contain-
ing the number of times the question has been an-
swered correctly, the number of wrong answers,
and the number of problems reports.

8https://www.mongodb.com/

https://www.mongodb.com/

Guillermo Vega-Gorgojo / Clover Quiz: a trivia game powered by DBpedia 9

Figure 3. Sample questions from the Music, Books, Animals and Technology domains obtained with the mobile app of Clover
Quiz.

10 Guillermo Vega-Gorgojo / Clover Quiz: a trivia game powered by DBpedia

Table 3
Summary of the question generation process for the different domains. There are significantly more English questions in Arts
and Books because Spanish labels were missing in many DBpedia entities in these domains

Animals Arts Books Cinema Geo Music Tech TOTAL

of templates 125 269 387 295 724 767 374 2,941
of questions (Spanish) 15,342 18,121 23,580 49,208 24,086 36,136 21,014 187,487
of questions (English) 15,347 27,523 46,403 50,199 24,484 36,075 21,017 221,048

Figure 4. System architecture of Clover Quiz.

The role of the application server is to handle
question requests without exposing the database
server to the mobile app directly. In this way,
the security of the database is not compromised
and an eventual upgrade or replacement of the
database component does not require changes in
the mobile app. Since JSON was derived from
JavaScript and is commonly employed with this
language, a natural decision was to use Node.js
for the application server. Node.js is a popular
JavavaScript runtime environment for executing
server-side code.9
Application servers are purposed for handling

dynamic content, but they are not very strong
for serving static content. Since 67% of the ques-
tions in Clover Quiz have an associated image,
fast static file serving is an important requirement.
This is addressed through the use of Nginx,10 an
efficient and fast performant Web server that ex-
cels at serving static content and can also be used
as a reverse proxy [22]. Thus, Nginx was config-
ured to host the game images and to forward ques-
tion requests to the application server. In addi-
tion, another Nginx box was set up as a Web cache
to improve performance and reduce the back-end
load.
Regarding the mobile app, an Android version

of the game described in Section 2 was coded. It
has been designed following Android conventions

9https://nodejs.org/
10https://nginx.org/

and is structured in three layers: the user inter-
face consists of Android activities and fragments,
the domain layer handles user requests and imple-
ments the game logic, and the technical services
layer addresses data storage, compression, encryp-
tion, and network access. The mobile app can be
played in phones and tablets and the user inter-
face is built following the Material Design guide-
lines11 – see sample snapshots in Figure 5. An es-
sential functionality is the matchmaking of players
that was implemented using Google Play Games
Services12 that provides a convenient and simple
API for turn-based multiplayer games. This way,
it is possible to initiate a match against a random
player or to invite a friend. The initial screen of
the game presents a list of pending invitations, on-
going and finished matches – see Figure 5(left) for
an example.

After selecting a match, a clover-shaped board
is displayed with eight wedges corresponding to
the different domains – see Figure 5(right). The
player can push any of the available wedges, e.g.
Music, then select a subtopic, e.g. Heavy metal,
and finally answer the question posed. The mobile
app keeps a player profile that is used as a basis
to select a suitable question; specifically, there are
six different expertise levels for each subtopic that
controls the difficulty of the questions, along with
a randomisation effect. In addition, the player pro-

11https://material.io/
12https://developers.google.com/games/services/

https://nodejs.org/
https://nginx.org/
 https://material.io/
https://developers.google.com/games/services/

Guillermo Vega-Gorgojo / Clover Quiz: a trivia game powered by DBpedia 11

Figure 5. Sample snapshots of the mobile app of Clover Quiz.

file keeps track of the last 5,000 questions posed to
avoid repetitions. Player profiles are saved in the
cloud through Google Play Games Services, thus
allowing to save players’ progression and continue
from any device. It is also worth mentioning that
the mobile app includes additional features such as
a single-player mode, statistics, leaderboards and
achievements. Players can also report a problem
in a question by simply pushing a “Report prob-
lem” button that is always included in the ques-
tion result screen. This increments the number of
problem reports of the associated question statis-
tics document in MongoDB

6. Clover Quiz in practice

The game was released for Android devices on
March 11, 2017 under the names ‘Clover Quiz’ in
English and ‘Trebial’ in Spanish. It is available

free of charge through Google Play13 and is part
of the catalogue of Don Naipe,14 a sole proprietor-
ship company specialized in Spanish card games
for mobile devices. Clover Quiz was promoted with
an in-house ad campaign that ran from March 13
to March 16, i.e. other Android games by Don
Naipe15 showed interstitial ads about Clover Quiz.
At the time of this writing (August 2017), more

than 5K users have downloaded the game. Table 4
shows some statistics of the questions answered
during this period. It can look striking that most of
the requested questions were in Spanish, but this
basically reflects the user base of Don Naipe (note
that Clover Quiz has been only promoted with in-
house ads). Approximately two thirds of the ques-

13https://play.google.com/store/apps/details?id=
donnaipe.trebial

14http://donnaipe.com/
15https://play.google.com/store/apps/developer?

id=Don+Naipe

https://play.google.com/store/apps/details?id=donnaipe.trebial
https://play.google.com/store/apps/details?id=donnaipe.trebial
http://donnaipe.com/
https://play.google.com/store/apps/developer?id=Don+Naipe
https://play.google.com/store/apps/developer?id=Don+Naipe

12 Guillermo Vega-Gorgojo / Clover Quiz: a trivia game powered by DBpedia

Table 4
Overview of the questions answered from March 11 to August 1

Set Questions answered Correct responses Wrong responses Problem reports

Spanish 597,771 (100.0%) 382,431 (64.0%) 215,340 (36.0%) 1,915 (0.3%)
English 16,899 (100.0%) 10,106 (59.8%) 6,793 (40.2%) 20 (0.1%)

tions were correctly answered, while each player
has taken 122 questions on average, thus indicat-
ing a reasonable engagement with the game. In-
terestingly, the number of problem reports is quite
low and concentrated in a small set of questions. A
subsequent audit served to spot some problems: a
group type template with a wrong option, several
animals with misleading images, and one intrigu-
ing case in which Body louse was classified as a
Primate – the reason is that this parasite is anno-
tated in Wikipedia with the category Parasites
of humans that is a subcategory of Humans.
Clover Quiz users have also given feedback

through Google Play. Specifically, the average rat-
ing is 4.3 out of 5.0. The mobile app prompts users
to write a review after playing the game for some
time, and approximately 1% of them have left a
comment. Users’ reviews are generally very sup-
portive: there are some suggestions of new domain
areas, e.g. sports, and also a complain about a
server failure on April 14, 2017 – there was a sys-
tem reboot, and the question back-end was not
automatically restarted, now it is up again.
The latency of the production back-end server

was evaluated in May 2017. curl16 was employed
to measure the total response time of 1000 random
questions. The client machine ran the experiment
in Oslo, while the back-end is deployed in Amster-
dam. The average response time was 0.107s with a
standard deviation of 0.047s. Similarly, 1000 ran-
dom images hosted in the back-end were requested
with curl, taking 0.127s on average with a stan-
dard deviation of 0.041s. The reported latencies
are quite low and perfectly acceptable for an inter-
active trivia game. Indeed, Clover Quiz users have
not yet complained about performance.

7. Lessons learned

DBpedia is an amazingly comprehensive and
vast structured dataset that can be easily con-

16https://curl.haxx.se/

sumed and exploited for unforeseen applications,
e.g. a trivia game such as Clover Quiz. De-
spite the remarkable potential of DBpedia as a
source of structured knowledge, DBpedia is also
messy: there are multiple properties with essen-
tially the same meaning, e.g. dbp:birthPlace and
dbp:placeOfBirth; entities are not always mem-
bers of the right classes, for example, dbr:Beyoncé
is not a member of dbo:MusicalArtist; classes
may be broader than expected, e.g. most of the en-
tities in dbo:Country correspond to former coun-
tries and empires. As a result, consuming DBpe-
dia data requires a thorough examination of the
target domains – indeed, Section 3 gives several
examples of complicated queries in the data ex-
traction process of Clover Quiz because of this
messiness of DBpedia. In this regard, Linked Data
browsers and exploration tools like RDF Sur-
veyor [26] can be employed to grasp the data struc-
ture. In addition, some curation of the extracted
data may also be needed.

A substantial part of the riches of DBpedia cor-
respond to Wikipedia categories. Wikipedia edi-
tors have invested a tremendous effort on the an-
notation of categories that can be exploited with
DBpedia, although special care should be taken
to avoid pitfalls. More specifically, Wikipedia cate-
gories are a kind of “folksonomy”, so problems can
arise if they are handled as a strict class taxon-
omy – see the issue with Body louse in Section 6.
In this respect, the category annotation script em-
ployed in Clover Quiz can be configured to limit
the number of category levels considered in order
to restrict undesired consequences of the category
hierarchy. Furthermore, DBpedia users should be
aware that categorisation of entities is unequal,
i.e. an entity may not be included in a category al-
though it should. This is quite challenging for the
generation of questions in Clover Quiz, e.g. a ques-
tion about Baroque paintings would be incorrect
if a Baroque painting was wrongly included as a
distractor due to an incomplete categorisation. To
circumvent this problem, the target sets in Clover
Quiz templates are carefully defined to limit the

https://curl.haxx.se/

Guillermo Vega-Gorgojo / Clover Quiz: a trivia game powered by DBpedia 13

impact of missing information; in the previous ex-
ample, the corresponding template defines a tar-
get set comprised of paintings from the Gothic,
Renaissance, Baroque and Romantic movements,
hence any non-categorised painting is silently dis-
carded.
With respect to the proposed question gener-

ation mechanism, several SPARQL queries are
needed in order to build a question. For exam-
ple, the running example in Figure 2(left) requires
gathering paintings with animals, painting labels,
painting images, inlinks and outlinks. A question
of relation type like Figure 2(right) requires even
more queries, since it involves entities from two
classes and their relations. Besides, each query can
easily take more than one second, e.g. the query
in Listing 1. In order to meet the stringent la-
tency requirements of an interactive game, the
question set is generated off-line. The proposed
data gathering pipeline retrieves the data of in-
terest that is transformed into JSON to simplify
the creation of questions programmatically – this
solution exemplifies the crawling pattern for con-
suming Linked Data [10, ch. 6]. As a result, con-
sumer applications can be kept simple and with
low latency. The downside is the need of data repli-
cation and that applications may work with stale
data. Regarding DBpedia, there is already a lag
with Wikipedia, since the generation of DBpedia
is dump-based with a typical periodicity of 1–2 re-
leases per year [15]. Thus, data freshness can be
ensured by re-crawling DBpedia after a new re-
lease is available.
Overall, the template-based mechanism em-

ployed to generate the question set is quite flex-
ible, allowing high control in the selection of the
target entity sets and providing ample variety in
the formulation of questions. Although the num-
ber of templates defined in Clover Quiz is not
small (see Table 3), this is mainly due to the
creation of multiple template variations. In this
way, the class space is partitioned in smaller and
more coherent sets, e.g. the template employed
to generate question Figure 2(left) is replicated
for other movements like Modern Art or Impres-
sionism. About the effectiveness of the devised
solution, each English template in the Arts do-
main served to produce 102 questions in average
– and 1,197 per “meta- template” (note that in
non-Arts domains the figures are similar). Further,
the produced questions are production-ready with

high-quality stems and without requiring any kind
of post-processing for readability or presentation
purposes.

The proposed question difficulty estimator is
based on the popularity of the involved entities
in a question to assign a within-template diffi-
culty score. This estimation is further controlled
through a between-template difficulty assessment
defined by a human editor. In addition, distractor
similarity is used to provide three lists of distrac-
tors with varying closeness to the question key.
The employed popularity score is a cheap mea-
sure for estimating the difficulty of questions that
generally works very well, e.g. The Beatles is the
most popular band and United States the most
popular country. However, this estimator repro-
duces similar bias as Wikipedia,17 for example, the
Ecce Homo at Borja18 is an unremarkable paint-
ing that became an Internet phenomenon due to a
failed restoration attempt – this is the most pop-
ular Spanish painting according to the employed
popularity score.

8. Discussion

A large body of research has addressed the au-
tomatic generation of multiple choice questions,
especially using ontologies as a knowledge source
– a systematic review on this topic can be found
in [1]. The main advantages for using ontologies
are their ability to generate deep questions, e.g.
questions that asks about relations between the
different notions of the domain, and their ability
to produce good distractors. However, an ontology
is not always available for a domain of interest,
thus limiting the applicability of this approach.
As an alternative, Linked Data can be used as a
source of structured knowledge to generate multi-
ple choice questions. The use of Linked Data for
question generation is particularly appealing given
the amount of RDF data available. In this regard,
DBpedia is one of the preferred knowledge sources
due to its quality and breadth of topic coverage.

There are several works in the literature that
use DBpedia to generate quiz questions, such

17https://en.wikipedia.org/wiki/Reliability_of_
Wikipedia#Susceptibility_to_bias

18https://en.wikipedia.org/wiki/Ecce_Homo_
(Martínez_and_Giménez,_Borja)

https://en.wikipedia.org/wiki/Reliability_of_Wikipedia#Susceptibility_to_bias
https://en.wikipedia.org/wiki/Reliability_of_Wikipedia#Susceptibility_to_bias
https://en.wikipedia.org/wiki/Ecce_Homo_(Mart�nez_and_Gim�nez,_Borja)
https://en.wikipedia.org/wiki/Ecce_Homo_(Mart�nez_and_Gim�nez,_Borja)

14 Guillermo Vega-Gorgojo / Clover Quiz: a trivia game powered by DBpedia

as [5,12,16,18,19,23,24,29]. Most of them are early
demonstrators that are no longer available. Per-
haps the main problem of these initiatives is the
use of a simplistic question generation process,
e.g. [29] and [12] only support one query type. In
addition, none of them exploits Wikipedia cate-
gories and supporting images are rarely employed.
A notable exception is [5] that invests more ef-
fort in the creation of question types by defin-
ing subsets of DBpedia and then generating ques-
tions (even with images). This approach for ques-
tion generation is closer to the one devised in
Clover Quiz, but it does not scale so well: each
question type requires the extraction of a DBpe-
dia subset, as well as changes in the quiz gener-
ation engine. In contrast, the approach of Clover
Quiz is completely declarative and can be easily
ported to other languages. As a result, there are
more than 200K questions (in English and Span-
ish) built from 2.9K templates, while the other ini-
tiatives report question sets in the range of thou-
sands.
[1,7,27,28] are examples of question generation

systems not purposed for quiz games. [7] uses
Linked Data as input, while [1,27,28] employ do-
main ontologies. [7] only supports two types of
multiple choice questions, one based on entity de-
scriptions and another built from verbalising a
triple pattern. [1] can produce seven types of ques-
tions about ontology classes – this limits its ap-
plicability with Linked Data in which entities are
the most prominent elements. Finally, [28] is an
extended version of the system proposed in [27]
that provides an extensive set of question tem-
plates that can be potentially used with Linked
Data.
Controlling the overall difficulty is a very impor-

tant feature in question generators, but this aspect
is not addressed in many of the surveyed works. In-
terestingly, [29,24,28] also rely on entity popularity
for estimating the difficulty of a question as a ba-
sis. [24,28] further control difficulty through an au-
tomatic mechanism: [24] analyses the coherence of
entity pairs to estimate the difficulty of a question,
while [28] assigns a triviality score of the predi-
cates involved in a question stem. The between-
template difficulty score used in Clover Quiz plays
a similar role, though it relies on the assessment of
a human editor. With respect to the generation of
distractors in multiple choice questions, DBpedia-
based question generators typically use random

distractors, e.g. [29,5,7,12]. Since distractors have
an impact on difficulty [9, ch. 41], [3,16,24,27,28]
have proposed different approaches to generate
suitable distractors – indeed, this is the only mech-
anism to control question difficulty in [3,16]. In
particular, [3] investigates semantics-based dis-
tractor generation mechanisms, proposing several
measures based on Jaccard’s coefficient [13] to con-
trol the difficulty of questions and running a user
study to evaluate its effectiveness. Unfortunately,
[3] is limited to ontology-based questions that ex-
ploit class subsumption, so it cannot be directly
applied to generate questions about entities in DB-
pedia. Nevertheless, Clover Quiz takes inspiration
from this work to generate different lists of dis-
tractors for distinct difficulty levels, as discussed
in Section 4.

On the effort required to produce the question
set in Clover Quiz, the most time-consuming tasks
correspond to the authoring of the domain speci-
fication files and the question templates. The for-
mer requires a close inspection of DBpedia to deal
with its messiness, as discussed along Section 7. To
reduce human effort, a disambiguation tool such
as AIDA [11] could be used to find suitable en-
tity types in the knowledge source for a given do-
main. With respect to the templates, the genera-
tion of varied and high-quality questions relies on
a thorough template authoring for the selected do-
mains of interest. The approach is indeed scalable,
since Clover Quiz is an individual pet project that
has been fully carried out during 10 months on a
part-time basis. Note that other proposals some-
times rely on the advances of the related domain of
question answering over Linked Data [17]. The key
challenge of question answering is the translation
of information needs into a form suitable for Se-
mantic Web technologies. Thus, [7,24] employ ex-
isting natural language generators to verbalise the
set of RDF triples that conform a generated ques-
tion. Natural language conversion is not required
in Clover Quiz since every question template in-
cludes its own stem template and support for reg-
ular expressions, allowing high-control in the pro-
duced stems.

Furthermore, an entirely automated question
generation pipeline without any configuration step
seems unrealistic. Indeed, fully automated ap-
proaches normally assume a post-generation step
with a human editor in order to improve the ver-
balisation of the obtained question set. In this re-

Guillermo Vega-Gorgojo / Clover Quiz: a trivia game powered by DBpedia 15

gard, the system proposed in [28] underwent an
editing phase to do some minor corrections of
the generated questions, while [3,7] report gram-
mar problems with their obtained questions in
two user studies. Another challenge of automatic
generators is the relevancy of the produced ques-
tions. Reported user studies with ontology-based
approaches show encouraging results in terms of
usefulness [3,27,28]. With respect to Linked Data-
based approaches, question usefulness is even more
challenging given the vastness of data available,
but results are somewhat preliminary: [24] re-
ported a crowdsourcing task to filter out irrele-
vant questions produced with their system; [7] uses
the most frequent properties to generate questions
from Linked Data, although the effectiveness of
this approach is not evaluated in their reported
user study; [29] employs property ranking heuris-
tics to generate questions from DBpedia, reporting
inconsistencies in DBpedia data and complaints
about questions being too simple or too difficult
in a user study.
Moving to system design, performance problems

are experienced when submitting live queries to
DBpedia, as in the case of [18]. Moreover, [7] re-
ports around four seconds to generate a question,
while [28] takes several minutes to generate a ques-
tion set of 25 questions from a domain ontology. To
improve latency, some initiatives take small snap-
shots of DBpedia and run their own triple stores,
e.g. [5] and [19]; [12] uses a question cache; and [29]
creates the question set off-line. Clover Quiz also
adopts the latter approach, but it goes further by
transforming the crawled data into JSON to facil-
itate the generation of questions, in particular to
exploit Wikipedia categories. The back-end server
in Clover Quiz is able to cope with the require-
ments of the mobile app, obtaining an average re-
sponse time of 0.1s in a benchmarking experiment
presented in Section 6.
With the release of Clover Quiz as an Android

app in Google Play, more than 5K users have
downloaded the game and answered more than
614K questions. User ratings are high (4.3 out of
5.0) and comments encouraging, thus suggesting
that the questions generated from DBpedia are en-
tertaining and that the game mechanics work. Fu-
ture work includes the development of an iOS ver-
sion and a real time mode to further improve user
engagement. Moreover, Clover Quiz could be ex-
tended to improve DBpedia’s content through the

game. Beyond Clover Quiz and DBpedia, the pro-
posed data extraction pipeline and question gener-
ator can be used with any other semantic dataset
– the only requirement is a SPARQL endpoint. As
a result, a promising future line is the generation
of multiple choice questions from other knowledge
bases; this is especially relevant in the e-learning
domain, given the importance of multiple choice
questions and the advent of Massive Online Open
Courses (MOOCs) [8].

References

[1] T. Alsubait, Ontology-based multiple-choice question
generation, PhD thesis, University of Manchester,
United Kingdom, 2015.

[2] T. Alsubait, B. Parsia and U. Sattler, Generating mul-
tiple choice questions from ontologies: lessons learnt,
in: Proceedings of the 11th OWL: Experiences and Di-
rections Workshop (OWLED), Riva del Garda, Italy,
2014, pp. 73–84.

[3] T. Alsubait, B. Parsia and U. Sattler, Ontology-based
multiple choice question generation,Künstliche Intelli-
genz 30(2) (2016), 183–188, DOI: 10.1007/s13218-015-
0405-9.

[4] P. Boldi and C. Monti, Cleansing wikipedia categories
using centrality, in: Proceedings of the 25th Interna-
tional Conference Companion on World Wide Web
(WWW ’16 Companion), Montreal, Canada, 2016,
pp. 969–974.

[5] C. Bratsas, D.E. Chrysou, E. Eftychiadou, D. Kon-
tokostas, P. Bamidis and I. Antoniou, Semantic Web
game based learning: An i18n approach with Greek
DBpedia, in: Proceedings of the 2nd International
Workshop on Learning and Education with the Web of
Data (LiLe 2012), Lyon, France, 2012.

[6] T. Bray, The JavaScript Object Notation (JSON) Data
Interchange Format, Proposed Standard, RFC 7159,
The Internet Engineering Task Force (IETF), 2014.

[7] L. Bühmann, R. Usbeck and A.-C. Ngonga Ngomo,
ASSESS – Automatic self-assessment using Linked
Data, in: Proceedings of the 14th International Seman-
tic Web Conference (ISWC 2015), Bethlehem, PA,
USA, 2015, pp. 76–89.

[8] E. Costello, M. Brown and J. Holland, What questions
are MOOCs asking? – An evidence–based investiga-
tion, in: Proceedings of the Fourth European MOOCs
Stakeholders Summit (EMOOCS 2016), Graz, Aus-
tria, 2016, pp. 211–221.

[9] B.G. Davis, Tools for teaching, 2nd edn, John Wiley
& Sons, 2009.

[10] T. Heath and C. Bizer, Linked Data: Evolving the Web
into a Global Data Space, Morgan & Claypool, 2011.

[11] J. Hoffart, M.A. Yosef, I. Bordino, H. Fürstenau,
M. Pinkal, M. Spaniol, B. Taneva, S. Thater and
G. Weikum, Robust disambiguation of named entities
in text, in: Proceedings of the 2011 Conference on Em-

16 Guillermo Vega-Gorgojo / Clover Quiz: a trivia game powered by DBpedia

pirical Methods in Natural Language Processing, Ed-
inburgh, UK, 2011, pp. 782–792.

[12] B. Iancu, A trivia like mobile game with au-
tonomous content that uses Wikipedia based on-
tologies, Informatica Economica 19(1) (2015), 25,
DOI:10.12948/issn14531305/19.1.2015.02.

[13] P. Jaccard, Étude comparative de la distribution flo-
rale dans une portion des Alpes et des Jura, Bulletin de
la Société Vaudoise des Sciences Naturelles 37 (1901),
547–579.

[14] H. Ji, R. Grishman, H.T. Dang, K. Griffitt and J. El-
lis, Overview of the TAC 2010 knowledge base pop-
ulation track, in: Proceedings of the 3rd Text Analy-
sis Conference (TAC 2010), Gaithersburg, MA, USA,
2010.

[15] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kon-
tokostas, P.N. Mendes, S. Hellmann, M. Morsey,
P. Van Kleef, S. Auer and C. Bizer, DBpedia –
A large-scale, multilingual knowledge base extracted
from Wikipedia, Semantic Web Journal 6(2) (2015),
167–195, DOI: 10.3233/SW-140134.

[16] D. Liu and C. Lin, Sherlock: a Semi-Automatic Quiz
Generation System using Linked Data., in: Proceedings
of the 13th International Semantic Web Conference
(ISWC 2014), Riva del Garda, Italy, 2014.

[17] V. Lopez, C. Unger, P. Cimiano and E. Motta,
Evaluating question answering over linked data,
Web Semantics: Science, Services and Agents on
the World Wide Web 21 (2013), 3–13, DOI:
10.1016/j.websem.2013.05.006.

[18] F. Mütsch, Auto-generated trivia questions based
on DBpedia data, 2017, URL: https://github.com/
n1try/linkeddata-trivia, last accessed June 2018.

[19] J. Mynarz and V. Zeman, DB-quiz: a DBpedia-backed
knowledge game, in: Proceedings of the 12th Inter-
national Conference on Semantic Systems (SEMAN-
TICS 2016), Leipzig, Germany, 2016, pp. 121–124.

[20] L. Page, S. Brin, R. Motwani and T. Winograd, The
PageRank Citation Ranking: Bringing Order to the
Web, Technical Report, 1999-66, Stanford InfoLab,
1999, Previous number = SIDL-WP-1999-0120.

[21] S. Praetor, New DBpedia Release – 2016-10,
2017, URL: http://blog.dbpedia.org/2017/07/04/
new-dbpedia-release-2016-10/, last accessed June
2018.

[22] W. Reese, Nginx: the high-performance web server and
reverse proxy, Linux Journal 2008(173) (2008).

[23] D. Seyler, M. Yahya and K. Berberich, Generating
quiz questions from knowledge graphs, in: Proceedings
of the 24th International Conference on World Wide
Web (WWW 2015), Florence, Italy, 2015, pp. 113–
114.

[24] D. Seyler, M. Yahya and K. Berberich, Knowledge
questions from knowledge graphs, in: Proceedings of
the 3rd ACM International Conference on the Theory
of Information Retrieval (ICTIR 2017), Amsterdam,
Netherlands, 2017.

[25] A. Thalhammer and A. Rettinger, PageRank on
Wikipedia: Towards General Importance Scores for
Entities, in: Proceedings of the 13th European Seman-
tic Web Conference (ESWC 2016), Heraklion, Greece,
2016, pp. 227–240.

[26] G. Vega-Gorgojo, M. Giese and L. Slaughter, Explor-
ing semantic datasets with RDF Surveyor, in: Proceed-
ings of the 16th International Semantic Web Confer-
ence, ISWC 2017, Vienna, Austria, 2017.

[27] E.V. Vinu and P.S. Kumar, A novel approach to gener-
ate MCQs from domain ontology: Considering DL se-
mantics and open-world assumption, Web Semantics:
Science, Services and Agents on the World Wide Web
34 (2015), 40–54, DOI: 10.1016/j.websem.2015.05.005.

[28] E.V. Vinu and P.S. Kumar, Automated generation
of assessment tests from domain ontologies, Seman-
tic Web 8(6) (2017), 1023–1047, DOI: 10.3233/SW-
170252.

[29] J. Waitelonis, N. Ludwig, M. Knuth and H. Sack,
Whoknows? Evaluating linked data heuristics with
a quiz that cleans up DBpedia, Interactive Technol-
ogy and Smart Education 8(4) (2011), 236–248, DOI:
10.1108/17415651111189478.

https://github.com/n1try/linkeddata-trivia
https://github.com/n1try/linkeddata-trivia
http://blog.dbpedia.org/2017/07/04/new-dbpedia-release-2016-10/
http://blog.dbpedia.org/2017/07/04/new-dbpedia-release-2016-10/

