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Abstract—This paper proposes a statistical model for network
traffic based on α–stable stochastic processes as a prior step
towards detecting traffic anomalies in IP networks. To this end,
we provide statistical proof that real traffic can be modelled
this way, as well as pictorial evidence that this is indeed the
case. We also estimate the optimal length of the time window
of traffic to be fitted into our model, and compare our results
to other well–known traffic models such as Gaussian or Poisson
ones. Traffic data has been collected from two routers at the
University of Valladolid which provided two different levels of
traffic aggregation for our tests.

Index Terms—Network Traffic, α–stable Processes, Self–
Similarity, Anomaly Detection.

I. INTRODUCTION

Anomaly detection tries to find anomalous patterns in
network traffic. Automatic detection of such patterns can
provide network administrators with an additional source of
information to diagnose network behaviour or finding the
root cause of network faults; however, there is no commonly
accepted procedure to decide whether a given traffic pattern
is anomalous or not. Indeed, recent literature shows several
approaches to this problem and different techniques to address
it (see [1]–[11], described in section II).

A deeper review of relevant papers suggests that anomaly
detection usually consists of 4 sub–tasks that should be carried
out in order:

1) Data acquisition.
2) Data analysis (feature extraction).
3) Inference (classifying normal1 vs. anomalous traffic).
4) Validation.
Data acquisition is typically done by means of the Simple

Network Management Protocol (SNMP), periodically polling
a router so that traffic data is collected and stored for posterior
analysis. Secondly, stored data is processed so that some
features of interest are extracted. Literature shows that several
techniques have been used to this end. On a third stage,
extracted features are used as an input to a classifier algorithm
(several techniques have been applied too) whose output
should be able to tell whether traffic data were anomalous
or not. Lastly, authors usually validate their methods by

1In this paper, the word “normal” will be used in the sense of “natural
status” and not as a synonym of “Gaussian”.

testing their algorithms’ behaviour against a range of typical
anomalies. In this paper we will focus on the second stage
(data analysis) as a previous step towards providing a full
automatic anomaly detection system based on measurements
of SNMP variables.

The goal of data analysis in an anomaly detection system is
the extraction of some features of network traffic, preferably
a small number of them, which can be used as inputs to the
inference stage. One way to extract features from network
traffic is trying to fit collected data to a statistical model, so
that extracted features are given by the model’s parameters.
Historically, for example, the Poisson model has been used to
model network traffic mainly due to its simplicity and ease of
use. More recently, however, other statistical models have been
proposed for this purpose, e.g. Fractional Brownian Motion
(FBM) [12], Linear Fractional Stable Motion (LFSM) [13], or
the well–known Gaussian model. When using these models,
many authors ([12]–[14] for example) prefer to model accu-
mulated traffic instead of using its instantaneous evolution,
which should be more intuitive to a network administrator
(possibly, accumulated traffic is used to make use of the
self–similarity properties inherent to this kind of accumulated
processes). In fact, many widely used network monitoring
programs (e.g. [15]) provide graphs of instantaneous traffic
instead of accumulated one.

For our purpose of detecting anomalies, we will show
that instantaneous traffic can be modelled with a simple α–
stable model for real data obtained from two routers in the
University of Valladolid: a 1st–tier router which connects the
whole University to the outside world (“router 1”), and a 2nd–
tier one, which is in turn the main router of the School of
Telecommunications in the University (“router 2”). We show
that α–stable parameters have a very intuitive meaning closely
related to network traffic properties and that this model fits the
data better than other widely used models.

The rest of the paper is organised as follows: section II
reviews recent contributions in this field of research; section III
describes the framework used in our experiments, including
data sampling and router specifications. Section IV describes
the α–stable model, states the reasons why it should be a
good model for network traffic and briefly introduces its main
properties. Section V shows statistical evidence proving that



the α–stable model is valid under proper circumstances and
that it behaves better than other models even when those
circumstances are not met. We also give an indication on
how to calculate the optimal number of samples to use when
estimating parameters of the α–stable model. Section VI
describes related works in the area of traffic modelling and,
lastly, section VII concludes the paper.

II. BACKGROUND

In the last decade, several authors have contributed to
anomaly detection in network traffic from various points of
view. For example, in [1], the authors obtain traffic data from
two networks they have access to (referred to as “campus
network” and “enterprise network”) by using the SNMP
protocol, and define anomalies as abrupt changes in one or
more of the sampled SNMP variables. Using this definition
as a starting point, they assume that past traffic is normal
and compare it to current traffic, searching for significant
variations in the whole set of sampled variables. To this
end, they propose an abnormality measure for all SNMP
variables based on a generalised likelihood ratio [16], and
then join all these measurements into a single scalar which
can determine the presence or absence of anomalies when
compared to a specially crafted matrix eigenvalues. To validate
their approach, the authors propose 5 typical case studies of
anomalies intentionally provoked in both mentioned networks.

In [2], feature extraction is done using a statistic based on a
derivative of the Kolmogorov–Smirnov (KS) test [17]. With it,
the authors obtain a similarity value between current and refer-
ence (i.e. anomaly–free) traffic for each sampled variable. As
in [1], the authors assume that past traffic is normal and search
for abrupt changes in the distribution of sampled variables,
although they introduce a new adaption speed parameter which
regulates how quickly observed traffic becomes normal2. Note
that the KS test allows to make a decision on whether two data
sets are equally distributed without prior knowledge of how
data is distributed. The authors use a neural network to do the
inference part, whose inputs are the values of the mentioned
statistic, and whose output is the final decision on whether
an anomaly exists or not. Validation is done in simulated
networks, using the program OPNET [18], in two different
scenarios.

A third approach can be found in [3]. Here, data does not
come from SNMP variables but from attributes present in the
headers of datagrams sent over the net, such as protocol and
destination port numbers (this of course requires access to
those headers). The abnormality measurement for collected
data is related to information theory; more concisely, relative
entropy3 between reference (normal) and observed traffic is
calculated and compared to a predefined threshold, so an alert
is raised when the calculated value exceeds this threshold. The

2If an anomaly is detected in the inference stage, observed traffic is
prevented from becoming normal.

3Relative entropy, or Kullback–Leibler distance [19] measures the differ-
ence between the distributions of two data sets, in an analogous way as KS
or χ2 tests [17] do.

authors state that their approach can detect abrupt changes as
well as slow trends; however, reference traffic must be manu-
ally labelled and classified by a human expert before operation.
Traffic data used in this paper comes again from a network the
authors had access to (the Massachusetts University campus).
These data are used to validate their algorithm too, by looking
for port scan attacks, although the authors admit that several
false positives are reported because reference traffic is not
complete enough.

In [4], an interesting proposal is made, which is able to trace
anomalies from source to destination by using data sampled at
several routers via SNMP. In this case, the authors only sample
the amount of traffic passing through each router, and define
anomalies as abrupt changes in it, for a particular traffic flow
(that is, between a given source and destination), in contrast
to other papers, where there is some freedom to sample more
SNMP variables apart from traffic amounts. Anomalies are
detected using Principal Component Analysis (PCA) tech-
niques, which allows the authors to separate sampled traffic
in its normal and anomalous components. This way, if the
anomalous component exceeds a certain threshold, an alert is
raised to the user. On the other hand, this paper not only tries
to detect anomalies, but to identify its type too, by comparing
sampled traffic to a battery of previously–catalogued abnormal
traffic data, and to assign an importance rating to detected
anomalies, by estimating differences between expected and
sampled traffic amounts. Validation data comes from 2 Internet
backbones, in which the authors try to detect real anomalies as
well as anomalous traffic injected on purpose by themselves.

There are also alternatives based on wavelets [5]. In a
similar way as previous approaches, data is sampled at some
routers via SNMP, and then traffic flows are analysed using
wavelets. Again, an alert is raised if certain parameters exceed
a predefined threshold, and validation uses data from a router
accessible by the authors (University of Wisconsin–Madison’s
main router).

Another different approach, described in [6] and [7] uses
entropy measures to do feature extraction, and finite–state
machines for the inference stage; nevertheless, these papers
do not restrict to network traffic, but try to detect anomalies
in a more general scope referred to as “dynamic systems”.
As a matter of fact, validation is done by analysing electronic
circuit behaviour.

More briefly now, [8] is similar on its methods to [3], since
entropy techniques are used to measure abrupt variations in
several fields of IP or TCP/UDP headers, although this time,
the authors just try to identify known virus attacks. In [9],
self–organising maps are used to classify data obtained from
IP packets and an alert rises when the distance to the nearest
neuron exceeds a threshold. Again, validation is done with
real data coming from an accessible network, the same way
as in [10], where Kohonen maps are used to classify traffic.
Lastly, [11] uses wavelets in its algorithm, and validates it with
real data from British Telecom.

The vast majority of all these proposals use nonparametric
approaches in their way to detect anomalies since there is



no need to know how data are distributed to apply them.
Nevertheless, a proper statistical model could bring some
advantages over nonparametric methods, provided that it fits
sampled data correctly. A good traffic model could drastically
reduce the dimensionality of the problem since it would allow
to operate with a few parameters instead of a complete data
set. A model could also provide some prediction capabilities
that would be more difficult to implement without it, and could
bring an analytical way of expressing anomalies.

III. EXPERIMENTAL SETTINGS

As mentioned in section I, all data used in this section was
collected from two routers in the University of Valladolid.
Router 1 is the core router for the whole University and router
2 is the main router from the School of Telecommunications.
Router 2 is directly connected to one of the ports in router
1. Both of them are able to operate at 1000 Mbps. Data
collection is done by querying the routers via SNMP every 5
seconds for accumulated byte counters at each physical port. A
5 seconds interval was chosen to keep a compromise between
measurement precision and a reasonably low workload on
the routers. Data has been countinuously sampled starting in
February 2007 for router 2, and in June 2007 for router 1 (with
some brief interruptions due to unpredictable contingencies).

Router 1 is a Cisco Catalyst 6509, and usually deals with
average traffic amounts of several Megabits per second (40–
70 Mbps typically). As mentioned, it is responsible for all
network traffic coming from every campus in the University
(this includes traffic from other cities in addition to Valladolid)
and comprises thousands of hosts directly or indirectly. Router
2, a Cisco Catalyst 3550, usually has a much lower workload,
its average traffic ranging typically below one Megabit per
second. Router 2 alone manages traffic coming from hundreds
of computers, which are in turn a fraction of those connected
to router 1.

These two routers deal with very different traffic amounts,
and should be representative of both heavily and lightly loaded
networks, as figure 1 shows. See also figure 2, which shows
typical histograms for router 1 (a) and router 2 (b), along with
three curves showing statistical fits of the three models we will
concentrate on in this paper, namely Poisson, Gaussian and α–
stable ones. At a glance, the α–stable model seems able to fit
traffic data better than the others (see appendix A for more
traffic histograms), so we will devote the following sections
to prove whether this is really the case or not.

IV. α–STABLE DISTRIBUTIONS AS A MODEL FOR
NETWORK TRAFFIC

In this section, we will review some statistical distributions
which have been previously used to model network traffic, and
see how the α–stable model can contribute to enhance traffic
modelling. We will do this by looking at Poisson and Gaussian
models in detail and stating some traffic properties we found
in our data, which should be inherent to traffic coming from
any data network. Then, we will see why neither Poisson nor

03:00 06:00 09:00 12:00 15:00 18:00 21:00
0

20

40

60

80

100

120

Date/Time (GMT)

M
bp

s

Instantaneous traffic vs. time

a)

06:00 09:00 12:00 15:00 18:00 21:00 00:00
0

5

10

15

20

25

30

35

Date/Time (GMT)

M
bp

s

Instantaneous traffic vs. time

b)

Fig. 1. A snapshot of instantaneous traffic passing through: a) router 1 and
b) router 2 (10,000 samples each, taken in Jun’07 and Feb’07 respectively).
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Fig. 2. A typical histogram of traffic passing through: a) router 1 and b)
router 2 (10,000 samples each, taken in Jun’07 and Feb’07 respectively) along
with Poisson (dash–dot), Gaussian (dashed) and α–stable (solid) curves fitted
to the data.

Gaussian models can accommodate to these properties and try
to answer the question of whether the α–stable model does.

A. Network traffic models

Traditionally, network traffic has been modelled as a Poisson
process for historical reasons. Indeed, the Poisson model
has been successfully used in telephone networks for many
years, and so it was inherited when telecommunication net-
works became digital and started to send information as data
packets [20]. Also, this model has a simple mathematical
expression [21], and has only one parameter, λ, which is in
turn very intuitive (the mean traffic in packets per time unit). In
the last decade, however, several authors have studied network
traffic behaviour and proposed other models that overcome the
limitations which are inherent to Poisson processes, the most
notable one probably being that the Poisson model has a fixed
relationship between mean and variance values (both are equal
to λ). We will see why this is a limitation and how to overcome
it later.

More recently proposed models are usually based on the
assumption that network traffic is self–similar in nature, a
statement that was made in [12] for the first time. Intuitively,
network traffic can be thought of as a self–similar process
because it is usually “bursty” in nature, and this burstiness
tends to appear independently of the used time scale. Thus,
in [12] FBM [22] is shown to fit accumulated network traffic
data well4, but the authors impose a strict condition: analysed

4Note that FBM is an autoregressive process and so it can model accumu-
lated traffic, but not instantaneous one.



traffic must be very aggregated5 for the model to work, that
is, the FBM model is only valid when lots of traffic traces
are aggregated, in such a way that the number of aggregated
traces is much bigger than a trace’s length. Let us consider
why it is necessary to set this restriction. First of all, we
used our collected data to try and see if this constraint was
needed in our particular network, and saw that it was indeed
the case. A graph showing some of our data can be seen in
figure 1. Note that there are some traffic peaks, or “bursts”
scattered among the data, which otherwise tends to vary in
a slower fashion. Recalling that instantaneous contributions
to FBM are Gaussian random variables, we can calculate a
histogram of traffic data like the one in figure 2, which shows
a typical case of instantaneous traffic distribution in router
2 along with Poisson, Gaussian and α–stable curves fitted
to real data6. The Poisson and Gaussian curves were fitted
using a Maximum Likelihood (ML) algorithm, and the α–
stable curve was fitted with an in–house developed algorithm7.
Clearly, one can see that sampled data is quite different from
the Gaussian probability distribution function (PDF), and a χ2

test [17] confirms this observation (at a 5% significance level,
the probability that the data follows a Gaussian distribution
with the estimated parameters is practically 0, see table II in
section V). Note that Poisson and Gaussian fits are so poor due
to the extreme values present in the data, which alter mean and
variance estimates considerably. These extreme values come
from traffic bursts and momentaneous peaks which tend to
occur naturally in computer networks. All of this means that
a single traffic trace cannot be modelled as an FBM because
contributing variables are not Gaussian. However, once many
traffic traces are aggregated (recall that, according to [12] the
number of traces must be much higher than their lengths), the
resulting data do follow a Gaussian distribution, and so, the
FBM model is valid. This happens as a consequence of the
Central Limit Theorem [21] which loosely states that the sum
of many identically distributed random variables converges to
a Gaussian distribution. Note, however, that for this statement
to be valid, 2nd–order moments of the summed variables must
exist [24]; that is, the variance of the summed distributions
must be finite. While it is obvious that real data will always
have a finite variance, we will come back to this later.

At this point it should be clear that a single instantaneous
traffic trace cannot be modelled using FBMs, simply because
instantaneous traffic data is not Gaussian (again, see table II).
A proper model for instantaneous network traffic must be
flexible enough to adapt to some properties seen in sampled
traffic, namely:

• The amount of traffic accumulated at time t1 is less than,
or equal to the amount of traffic accumulated at time t2,
for every t1 < t2; that is, traffic increments are greater

5Here, aggregated means exactly “averaged”. In other words, many traffic
traces must be summed up, and then divided by the number of summed traces.

6Figure 4 in appendix A shows more traffic histograms.
7The estimation algorithm for α–stable distributions is based on the

estimator by Fan [23], improved by means of a least squares approach, but
its description is beyond the scope of this document.

than, or equal to zero.
• The fact that at time t there is a certain amount of traffic
C does not imply in any way that at time t+1 the amount
of traffic lies anywhere near C, due to the inherent nature
of network traffic, which is often bursty and tends to show
peaks from time to time.

The latter property says that the variation in traffic from one
time tick to the next one can be very large, so when plotting
traffic data on a histogram like the one seen in figure 2, a
heavy tail usually appears on its right side. This tail is not
negligible as, for example, the tails of the Gaussian or Poisson
distribution. On this aspect, note that the histogram in figure 2
shows only data under percentile 98 because the right tail is
so long that if drawn, the true shape of the histogram would
not be seen. These heavy tails are caused by those already
mentioned traffic bursts or peaks. One effect heavy tails have
when modelling our data is that they distort mean and variance
estimates notably, which makes it difficult to fit Gaussian and
Poisson curves, as seen in figure 2.

On the other hand, the first aforementioned property makes
symmetric distributions (Gaussian and Poisson distribution are
symmetric) inappropriate, because if traffic data concentrates
near the vertical axis, the model would allow negative traffic
increments, and this can never be the case. Accordingly, if
traffic data concentrates near the maximum transmission rate,
a symmetric model would allow traffic increments to be larger
than physically possible. For example, if we extrapolated the
Gaussian (dashed) curve in figure 2 towards the left, we would
see that the probability of getting a negative Mbps rate is
not negligible. Neither of these problems occur with the α–
stable (solid) curve, so the natural question is now: are α–
stable distributions able to adapt to the previously mentioned
traffic properties?

B. The α–stable model

α–stable distributions can be thought of as a superset
of Gaussians and originate as the solution to the Central
Limit Theorem when 2nd–order moments do not exist [24],
that is, when data can suddenly change by huge amounts
as time passes by. This fits nicely to the second of the
mentioned properties seen in network traffic. Moreover, α–
stable distributions have an asymmetry parameter which allows
their PDF to vary between totally left–asymmetric to totally
right–asymmetric (this is almost the case of figure 2), while
Poisson and Gaussian distributions are always symmetric. This
parameter makes α–stable distributions fit naturally to the first
traffic property, even when average traffic is practically 0 or
very near the maximum theoretical network throughput (see
figure 2 again).

In addition, α–stable distributions give an explanation to
the restriction imposed in [12] about the need to aggregate
so many traffic traces for them to converge to a Gaussian
distribution. According to the Generalised Central Limit The-
orem [24], which includes the infinite variance case, the sum
of n α–stable distributions is another α–stable distribution,
although not necessarily a Gaussian one. Since traffic data



often has a huge variance (though obviously not infinite), and
under the hypothesis that it is α–stable, then the sum of a
few traces will be α–stable but not Gaussian. However, after
summing so many traces enough to overcome the enormous
variance, the final histogram will converge to a Gaussian curve,
as the traditional Central Limit Theorem states. Section V is
dedicated to validating this hypothesis, but before, although
describing α–stable distributions in detail is beyond the scope
of this paper, as there are several good references in this field
([22], [25], [26] for example), we will briefly mention a few of
their properties so discussions in later sections can be followed
to an extent.
α–stable distributions are a superset of Gaussians, and are

characterised by four parameters instead of just two. The first
two of them, α and β provide the aforementioned properties of
heavy tails (α) and asymmetry (β), while the remaining two, σ
and µ, have analogous meanings to those of the same name in
Gaussians (standard deviation and mean, respectively). Note
that, while they have analogous senses (scatter and centre),
they are not equivalent because α–stable distributions do not
have, in general, a finite mean or variance. The allowed
values for α lie in the interval (0, 2], being α = 2 the
Gaussian case, while β must lie inside [−1, 1] (-1 means
totally left–asymmetric and 1 totally right–asymmetric). The
scatter parameter (σ) must be a nonzero positive number and
µ can have any real value. If α = 2, the distribution does
not have heavy tails, and β loses its meaning since Gaussian
distributions are always symmetric. Conversely, the tail of the
PDF become heavier as α tends to zero.

V. RESULTS

In this section we will discuss the goodness of the α–stable
distributions as a model for network traffic. First we will show
statistical proof that the model is adequate for our real data
under the right circumstances, and then compare it against
other traffic models, namely Gaussian and Poisson ones, both
graphically and statistically, so as to provide further evidence
of its superior performance as a model for real data.

A. Goodness of fit of the α–stable model

We have already referred to figure 2 as a pictorial indication
that typical traffic histograms can be fitted well using α–stable
distributions. To give statistical proof that this is indeed the
case, several tests have been made with output traffic from
routers 1 and 2. Taking SNMP byte counters as an input, data
windows of 100, 1,000 and 10,000 consecutive samples have
been randomly chosen for each of the physical ports we had
been provided access to. For each of the three window lengths,
we made 100 experiments in which:

1) The four parameters of an α–stable distribution are fitted
to the data using our ad hoc estimation algorithm.

2) A χ2 goodness–of–fit test is made with the null hy-
pothesis (H0) being: data follows the estimated α–stable
distribution, against the alternative hypothesis (H1): data
does not follow the distribution.

3) A KS test is made using the same hypotheses. This is
done because heavy tails present in traffic data make the
χ2 test being inconclusive in many cases (see below).

Once the experiments are done, one can see that the χ2

test is more restrictive than KS (i.e. it is more difficult for the
null hypothesis to be accepted) due to the nature of the tests:
loosely, the KS test measures the maximum distance between
the theoretical Cumulative Distribution Function (CDF) and
the empirical one, whereas χ2 takes the distances in every
point into account. However, χ2 is sometimes inconclusive
when data has a heavy tail, because many of the bins in the his-
togram tend to be empty. This test needs a minimum amount
of data in every bin, and this forces it to join contiguous bins
into a larger one when necessary. If this phenomenon occurs
frequently (as is the case with heavy tails), the final amount of
bins is so low that it is impossible to make the test consistently
and so it becomes inconclusive. The KS test does not have this
limitation and so we included it in our experiments.

The results of test sets are documented in table I. For
each experiment set, the number of positive and negative
tests is shown, along with their success percentage. About
these results, there are two issues that deserve attention: first,
acceptation rates tend to be smaller as the number of samples
grows. This happens due to the way the tests work, which is
to expect more convergence as the number of samples grows,
i.e. the more data they are given, the more restrictive they get.
Second, χ2 tests are almost always inconclusive for small data
lengths, because the extreme values which form the heavy tail
force the test to reduce the number of bins too frequently.

B. Comparison to other traffic models

Following the goodness of fit tests for the α–stable model,
we will now see how it compares to other widely–used
models, namely Gaussian8 and Poisson ones. To this end,
let us recall that for large values of its parameter (λ), the
Poisson distribution converges to Gaussian9 with µ = λ and
σ =

√
λ. In our experiments, we let both µ and σ to change

freely when estimating them, so the Poisson model should
be automatically included in the Gaussian one, as long as
the considered network emits a sufficient amount of packets
per second. Again, in our experiments, average traffic is (at
least) well into the tens of packets per second, so the Gaussian
approximation should be accurate.

We proceed the same way as in section V-A, but the
parameters of a Gaussian distribution are estimated using
the ML estimator, instead of fitting the data to an α–stable
distribution. Then, the null hypothesis becomes: the data
follows a Gaussian distribution with the estimated parameters.
The results of this test can be seen in table II and figure 3. Note
that the hypothesis that data is α–stable has always a notably
greater success rate than the Gaussian one10 and, consequently,

8Recall that FBM is an additive process of Gaussian distributions.
9As a rule of thumb, λ = 10 is often considered large enough for this

purpose.
10α–stable distributions are a superset of Gaussians, so at least equal

performance was expected for the model to be useful.



TABLE I
HYPOTHESIS TEST RESULTS FOR TRAFFIC DATA UNDER THE ASSUMPTION

THAT IT FOLLOWS AN α–STABLE DISTRIBUTION.

Results for 100 sample windows
H0 H0 Incon– %

Test Data set accepted rejected clusive success
χ2 router 1 0 0 100 0.00
χ2 router 2 9 3 988 75.00
KS router 1 99 1 – 99.00
KS router 2 977 23 – 97.70

Results for 1,000 sample windows
H0 H0 Incon– %

Test Data set accepted rejected clusive success
χ2 router 1 0 1 99 0.00
χ2 router 2 667 272 61 71.03
KS router 1 65 35 – 65.00
KS router 2 735 265 – 73.50

Results for 10,000 sample windows
H0 H0 Incon– %

Test Data set accepted rejected clusive success
χ2 router 1 7 93 0 7.00
χ2 router 2 26 973 1 2.60
KS router 1 3 97 – 3.00
KS router 2 129 871 – 12.90

than the Poisson one too.

C. Optimal window length

Proceeding the same way as to elaborate table I, we can
find a relationship between the number of samples used in
the test and the estimation’s degree of success. To this end,
figure 3 shows how acceptance rate evolves as the number
of samples grows up (for clarity, only the results of the KS
test are shown). So, to get a desired statistical confidence in
goodness of fit, the optimal number of samples to use should
be the largest one which provides that degree of success in the
tests. This guarantees that the maximum level of information
is used whilst having statistical confidence that the model is
valid; for example, to get a 90% statistical confidence that the
α–stable model represents the data accurately, a 300–sample
window should be used. Again, looking at figure 3, it is clear
that the α–stable model has an obvious advantage in modelling
network traffic compared to the Gaussian approach.

VI. RELATED WORK

The use of α–stable distributions to model network traffic is
not new. In [13], traffic is modelled as a combination of Linear
Fractional Stable Noise (LFSN) and Log–Fractional Stable
Noise (Log–FSN), but these models are self–similar in nature
(see [22]), and the authors need to impose several limitations
to the α–stable parameters so that real data follows the model
correctly. For example, the centre parameter µ must be zero
for an α–stable process to be considered as either LFSN or

TABLE II
HYPOTHESIS TEST RESULTS FOR TRAFFIC DATA UNDER THE ASSUMPTION

THAT IT FOLLOWS A GAUSSIAN DISTRIBUTION.

Results for 100 sample windows
H0 H0 Incon– %

Test Data set accepted rejected clusive success
χ2 router 1 0 0 100 0.00
χ2 router 2 0 0 1,000 0.00
KS router 1 80 20 – 80.00
KS router 2 216 784 – 21.60

Results for 1,000 sample windows
H0 H0 Incon– %

Test Data set accepted rejected clusive success
χ2 router 1 0 1 99 0.00
χ2 router 2 0 606 394 0.00
KS router 1 16 84 – 16.00
KS router 2 2 998 – 0.20

Results for 10,000 sample windows
H0 H0 Incon– %

Test Data set accepted rejected clusive success
χ2 router 1 0 100 0 0.00
χ2 router 2 0 1,000 0 0.00
KS router 1 0 100 – 0.00
KS router 2 0 1,000 – 0.00

Log–FSN. With this constraint, the first mentioned property
seen in traffic data cannot hold true, so the model is altered to
consider the absolute value of the traffic process instead of the
original one. For similar reasons, they must restrict to α–stable
distributions having α > 1 and β = 0. The model we propose
here does not have such restrictions, as the full parameter range
of α–stable distributions can be used to model traffic data so,
in the end, we have a simpler model which inherently has a
greater ability to capture traffic behaviour, albeit we cannot
measure the degree of self–similarity present in traffic data (if
any).

More related work on this subject can be found in [14],
where the authors try to answer, from a mathematical point of
view, the question of whether traffic data is better modelled
with Stable Lévy Motion [22] (SLM) or FBM11. To this
end, they use connection rates as an input parameter to some
commonly used packet–source models, such as the ON/OFF
and the infinite source Poisson models. Note that both SLM
and FBM are cumulative processes, so they do not model
instantaneous traffic but accumulated one. Their conclusion
is that for high connection rates FBM can be used, but for
low connection rates SLM is more appropriate. This seems to
be in concordance with our results because data from router 1,
which deals with higher connection rates than router 2, tends
to be better modelled with Gaussian distributions than data

11Among other differences, SLM contributions are α–stable while FBM
ones are Gaussian.
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Fig. 3. Evolution of H0 acceptance rate vs. the number of samples used,
for traffic measured at: a) router 1; b) router 2.

from router 2 (see tables I and II).

Despite their potential advantages, however, we will also
state some reasons why α–stable distributions are difficult to
use. First, the absence of mean and variance in the general case
makes it impossible to use many traditional statistical tools
in dealing with them. Moreover, these distributions do not
have (to the best of our knowledge) a known closed analytical
form to express their PDF nor their cumulative distribution
function (CDF), so powerful numerical methods are needed for
tasks which are almost trivial with (for example) the Gaussian
distribution, such as estimating their parameters for a given
data set, or even drawing a PDF. Also, the fact that they
have four parameters instead of just two introduces two new
dimensions to the problem, which can make processing times
grow very fast compared to the Gaussian approach.

VII. CONCLUSIONS AND FUTURE WORK

This paper is a first approach towards anomaly detection
based on a statistical traffic model. This will allow us to
use parametric methods in the inference stage, which should
prove to be advantageous in comparison to non–parametric
methods. The use of a mathematical model adds knowledge
to the anomaly detection system, provided that it is able to
model real data correctly.

Using sampled data from two routers, each with their partic-
ular setup and workload, we showed that α–stable distributions
seem to fit real data reasonably well and stated two main
reasons why they should pose a good model for network traffic
(positive increments and burstiness). We provided statistical
proof that α–stable distributions can be used as a model for
traffic windows consisting of a certain amount of samples, and
gave a relationship between window length and the desired
confidence level.

We also compared the α–stable model to Gaussian and
Poisson models, which have been traditionally used to model
network traffic, and found that α–stable distributions seem
to have superior performance as expected, because of the
convergence of Poisson distributions to Gaussians, and the fact
that the Gaussian distribution is a particular case in the more
flexible space of α–stable distributions.

Further work in this subject falls in two main areas. First, the
proposed model opens a path to the inference stage of anomaly
detection, so a way to classify the α–stable parameter space
into normal and anomalous traffic is to be proposed. On this
matter, we will study α–stable parameter evolution over time
with normal traffic, as well as (purposely injected) anomalous
one. On the other hand, we shall consider new ways to improve
the α–stable model so that longer windows can be used whilst
not degrading the obtained statistical confidence level.

Last, we plan to implement an α–stable traffic generator
into the well–known NS2 network simulator [27] so we can
use it in the validation stage.
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APPENDIX

For completeness, figure 4 shows some histograms of traffic
measured at routers 1 and 2, along with Poisson, Gaussian and
α–stable PDFs fitted to the data. Note how the α–stable curve
tends to fit real data better than Poisson and Gaussian models,
although in some cases the latter seems to fit well too. When
data is not very bursty (i.e. it has few extreme values), the
Poisson model usually estimates mean traffic reasonably well,
but it does not seem to be the case with variance values.
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Fig. 4. Various histograms showing Poisson (dash–dot), Gaussian (dashed)
and α–stable (solid) distributions fitted to traffic data. Histograms are made
from 1,000 data collected in Feb’07 at: a) router 1; b) router 2.
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