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Abstract. Data generation in RDF has been increasing over the last
years as a means to publish heterogeneous and interconnected data. RDF
is usually serialized in verbose text formats, which is problematic for
publishing and managing huge datasets. HDT is a binary serialization of
RDF that makes use of compact data structures, making it possible to
publish and query highly compressed RDF data. This allows to reduce
both the volume needed to store it and the speed at which it can be
transferred or queried. However, it moves the burden of dealing with
huge amounts of data from the consumer to the publisher, who needs to
serialize the text data into HDT. This process consumes a lot of resources
in terms of time, processing power, and especially memory. In addition,
adding data to a file in HDT format is currently not possible, whether
this additional data is in plain text or already serialized into HDT.

In this paper, we present HDTCat, a tool to merge the contents of two
HDT files with low memory footprint. Apart from creating an HDT file
with the added data of two or more datasets efficiently, this tool can be
used in a divide-and-conquer strategy to generate HDT files from huge
datasets with low memory consumption.

Keywords: RDF · Compression · HDT · Scalability · Merge ·
HDTCat

1 Introduction

RDF (Resource Description Framework)1 is the format used to publish data
in the Semantic Web. It allows to publish and integrate heterogeneous data.
There exists a number of standard RDF serializations in plain text (N-triples,
RDF/XML, Turtle, . . . ). While these serializations make RDF easy to process,
the resulting files tend to be voluminous. A common solution consists of using a
universal compressor (like bzip2) on the data before publication. This solution,
however, requires the decompression of the data before using it by the consumer.

1 https://www.w3.org/TR/rdf11-concepts/.
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HDT (Header-Dictionary-Triples) is a binary serialization format that
encodes RDF data in two main components: The Dictionary and the Triples.
The Dictionary gives an ID to each term used in the data. These IDs are used in
the Triples part to encode the graph structure of the data. Both components are
serialized in compressed space using compact data structures that allow the data
to be queried without the need to decompress it beforehand. Because of this,
HDT has become the center piece of RDF data stores [2,11], public query end-
points [12], or systems for query answering in natural language [3,4]. However,
the serialization process requires important amounts of memory, hampering its
scalability. In addition, the current workflow to serialize RDF into HDT does
not cover use cases such as adding data to an existing HDT file or merging two
separate HDT files into one. This forces a user to fully decompress the HDT file.

In this paper we present HDTCat, a tool to merge two HDT files. This allows
several functionalities: (1) to create an HDT file that combines the data of two
HDT files without decompressing them, (2) to add data to an existing HDT file,
by compressing this data first into HDT and then merging with the existing file,
or (3) compressing huge datasets of RDF into HDT, by the means of splitting
the data in several chunks, compressing each one separately and then merging
them.

The rest of the paper is organized as follows: Sect. 2 presents background
information about RDF and HDT, as well as related work on scalability of HDT
serialization. Section 3 describes the algorithms of HDTCat. Section 4 shows how
HDT performs against current alternatives. Finally, in Sect. 5 we give some clos-
ing remarks and present current and future lines of work for HDTCat.

2 Background

In this section, we provide basic background knowledge about RDF and how it
is serialized into HDT. This is necessary to understand the approach to merge
two HDT files.

2.1 RDF

RDF is the data model used in the Semantic Web. The data is organized in triples
in the form (s, p, o), where s (the subject) is the resource being described, p (the
predicate) is the property that describes it, and o (the object) is the actual value
of the property. An object can be either a resource or a literal value. In a set
of triples, resources can appear as subject or object in different triples, forming
a directed labeled graph, which is known as RDF graph. Formal definitions for
RDF triple and RDF graph (adapted from [9]) can be seen in Definition 1 and 2,
respectively.

Definition 1 (RDF triple). Assume an infinite set of terms N = I ∪ B ∪ L,
where I, B, and L are mutually disjoint, and I are IRI references, B are Blank
Nodes, and L are Literals. An RDF triple is a tuple (s, p, o) ∈ (I ∪B)×I × (I ∪
B ∪ L), where “s” is the subject, “p” is the predicate and “o” is the object.
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Definition 2 (RDF graph). An RDF graph G is a set of RDF triples of the
form (s, p, o). It can be represented as a directed labeled graph whose edges are
s

p−→ o.

Example 1. The following snippet show an RDF file, that we call RDF1, in
N-Triples format:

<so1> <p1> <o1>.
<so1> <p1> <o2>.
<s1> <p2> <so1 >.

Moreover we denote as RDF2 the following RDF file in N-Triples:

<so1> <p3> <o2>.
<o2> <p1> <s1 >.

We will use these two files as running examples and show how they can be
compressed and merged using HDTCat.

2.2 HDT

HDT [6] is a binary serialization format for RDF based on compact data struc-
tures. Compact data structures are data structures that compress the data as
close as possible to its theoretic lower bound, but allow for efficient query oper-
ations. HDT encodes an RDF graph as a set of three components: (1) Header,
that contains the metadata about the file and the data itself; (2) Dictionary,
which assigns an unambiguous ID to each term appearing in the data; and (3)
Triples, that replaces the terms by their ID in the dictionary and encodes them
in a compressed structure. While HDT allows for different implementations of
both Dictionary and Triples components, efficient default implementations are
currently published. These implementations are the Four-Section Dictionary and
the Bitmap Triples. We provide brief descriptions of those implementations down
below.

The Header component stores metadata information about the RDF dataset
and the HDT serialization itself. This data can be necessary to read the other
sections of an HDT file. The Dictionary component stores the different IRIs,
blank nodes, and literals, and assigns to each one an unambiguous integer ID.
The Triples component stores the RDF graph, where all the terms are replaced
by the ID assigned in the Dictionary component. From now on to represent an
HDT file, we write HDT = (H,D, T ), where H is the header component, D
is the dictionary component, and T is the triples component. In theory, each
component allows different encoding. In practice, however, current compression
formats are based in sorting lexicographically their elements. We describe there-
after characteristics of current HDT encoding.

In the Four-Section Dictionary an integer ID is assigned to each term (IRI,
Blank Node and Literal). The set of terms is divided into four sections: (1) the
Shared section, that stores the terms that appear at the same time as subjects
and objects of triples; the Subjects section, which stores the terms that appear
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exclusively as subjects of triples; the Objects section, which contains the terms
that appear only as object of triples; and finally the Predicates section, storing
the terms that appear as predicates of the triples. From now on, we write the
Dictionary as a tuple D = (SO ,S ,O ,P), where SO is the shared section, S is
the subjects section, O is the objects section, and P is the predicates section. In
each section the terms are sorted lexicographically and compressed (e.g., using
Plain [1] or Hu-Tucker FrontCoding [10]). The position of each term is then used
as its implicit ID in each section. This way to each term an integer is assigned
in a space-efficient way. The dictionary needs to provide global IDs for subjects
and objects, independently of the section in which they are stored. Terms in P
and SO do not change, while IDs for S and O sections are increased by the size
of SO (i.e., IDS := IDS + max(IDSO) and IDO := IDO + max(IDSO)).

Example 2. Consider the file RDF1 from Example 1. We call the corresponding
HDT file HDT [1] = (H1 ,D1 ,T1 ) with D1 = (SO1 ,S1 ,O1 ,P1 ). The dictionary
sections look as follows (note that the compression is not shown here as it is not
important to understand HDTCat):

SO1

IRI ID
<so1> 1

S1
IRI ID

<s1> 2

O1

IRI ID
<o1> 2
<o2> 3

P1

IRI ID
<p1> 1
<p2> 2

Note that the ids in the S1 and O2 section start by 2 since there is one entry in
the common section SO1. Similarly for RDF2 we get HDT2 with:

SO2

IRI ID
<o2> 1
<so1> 2

S2
IRI ID

O2

IRI ID
<s1> 3

P2

IRI ID
<p1> 1
<p3> 2

�

In the triples component T , each term in the triples is replaced by the ID
from the dictionary and sorted in what is known as Plain Triples. The ordering
is defined in the following.

Definition 3. If T1 = (s1 , p1 , o1 ) and T2 = (s2 , p2 , o2 ) are two triples then
T1 ≥ T2 if and only if:

1. s1 ≥ s2 ;
2. if s1 = s2 then p1 ≥ p2 ;
3. if s1 = s2 and p1 = p2 then o1 ≥ o2 ;

Example 3. The triples from RDF1 from Example 2 in Plain Triples are:

1 1 2
1 1 3
2 2 1
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Note that they respect the order defined in Definition 3. The one from RDF2

are:

1 1 3
2 2 1

Note that the triples were reordered.

�

The triples can be compressed in Compact Triples, which uses two coordi-
nated sequences of IDs, QP and QO , to store the IDs of predicates and objects
respectively, in the order they appear in the sorted triples. The first ID in QP is
assumed to have the subject with IDs = 1. Each following ID is assumed to have
the same ID as its predecessor. If the ID 0 appears in the sequence, it means
a change to the following ID (i.e., the ID is incremented by one). Respectively,
the first ID in QO is matched with the property in the first position of QP .
Each following ID is assumed to have the property as its predecessor, and if the
ID 0 appears in the sequence, it means a change to the following ID (that is, the
next ID in QP). This can be further compressed in BitMap Triples by removing
the 0 from the ID sequences and adding two bit sequences, BP and BO , that
mark the position where the change of subject (for QP ) or predicate (for QO )
happen. Note that the data-structures described above allow fast retrieval of all
triple patterns with fixed subject. Some more indexes are added to resolve fast
triple patterns with fixed predicate or object. Moreover, note that due to the
global ordering updates are not supported.

2.3 Works on Scalability of HDT

To the best of our knowledge, there are only two publications that deal with
scalable HDT generation. The first one is HDT-MR [7], a MapReduce-based
tool to serialize huge datasets in RDF into HDT. MDT-MR has proven able
to compress more than 5 billion triples into HDT. However, HDT-MR needs a
MapReduce cluster to compress the data, while HDTCat can run in a single
computer.

A single HDT file containing over 28 billion triples has been published in
LOD-a-lot [5]. The aim was to generate a snapshot of all current RDF triples in
the LOD cloud. However, both the algorithm and tool used to create this HDT
file are not public. HDTCat tries to fill this gap making the algorithm and tool
needed to create HDT files of this size open to the public.

3 HDTCat

In this section we describe the HDTCat algorithm. Given two HDT files HDT1

and HDT2, HDTCat generates a new HDT file HDTcat that contains the union
of the triples in HDT1 and HDT2. Its goal is to achieve this in a scalable way,
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in particular in terms of memory footprint, since this is generally the limited
resource on current hardware.

Let’s assume two HDT files, HDT1 = (H1 ,D1 ,T1 ) and HDT2 = (H2 ,
D2 ,T2 ) are given. The current solution to merge these two HDT files is to first
decompress them into text. Then, the two text files are concatenated, and the
resulting file is serialized again into HDT. Basically, two ordered lists are put one
after the other and ordered again without exploiting their initial order. The prob-
lem addressed by HDTCat is how to merge the dictionaries D1, D2 and the triples
T1, T2 without decompressing them, so that the resulting HDT file contains the
union of the RDF triples. The result of of merging the two HDT files needs to be
the same as the serialization of the contatenation of the two uncompressed files,
that is rdf2hdt(RDF1+RDF2)=hdtcat(rdf2hdt(RDF1),rdf2hdt(RDF2)).

The algorithm can be decomposed into three phases:

1. Joining the dictionaries,
2. Joining the triples,
3. Generating the header.

For the two first phases, HDTCat uses merge-sort-based algorithms that take
advantage of the initial ordering of the HDT components. The general idea of
the algorithms is described in Fig. 1. Briefly, there are two iterators over the two
lists. Recursively, the current entries of the two iterators are compared and the
lowest entry is added to the final list.

There are two important consequences. Imagine the two components have
n respectively m entries. The first consequence is that the time complexity is
reduced. If two components are merged by first decompressing and then seri-
alizing their union, the time complexity is O((n + m) · log(n + m)) because of
the need to merge an unsorted set of triples. However, when sorting two already
sorted lists, using the algorithm above, the time complexity is O(n + m). The
second, and in our eyes the more important, is the memory consumption. The
existing approach to serialize RDF into HDT stores every uncompressed triple
in memory so that the memory complexity is in the order of O(n+m). Iterating
over the sorted lists by letting them compressed, and decompressing only the
current entry, reduces the memory complexity to O(1) This explains the main
idea behind HDTCat. We are now going to explain more in detail the merging
strategy and the data-structures needed.

3.1 Joining the Dictionary

Assume two HDT dictionaries D1 = (SO1 ,S1 ,O1 ,P1 ) and D2 = (SO2 ,S2 ,O2 ,
P2 ). The goal is to create a new HDT dictionary Dcat = (SOcat ,Scat ,Ocat ,Pcat).

Merging the sections P1 and P2 is a simple process. P1 and P2 are two
arrays of ordered compressed strings. Algorithm 1 assumes that there are two
iterators over the two lists. Recursively, the current entries of the two iterators
are compared and the lowest entry is added to the final list. To compare the
entries they are decompressed, and the new entry is compressed directly and
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Data: Two sorted lists a and b
Result: A sorted list c containing all entities in a and b

1 n= length of a; m = length of b
2 allocate c with length n+m
3 i = 1; j = 1
4 while i < n || j < m do
5 if i = n then
6 copy rest of b into c
7 break

8 end
9 if j = m then

10 copy rest of a into c
11 break

12 end
13 if a[i] < b[j] then
14 copy a[i] into c
15 i=i+1

16 end
17 if b[j] < a[i] then
18 copy b[j] into c
19 j=j+1

20 end
21 if a[i] = b[j] then
22 copy a[i] into c
23 i=i+1
24 j=j+1

25 end

26 end

Algorithm 1: Algorithm to merge two sorted lists. Note that the algorithm
has a time complexity of O((n + m)). All computation do not need to be done
on RAM but can be performed on disk.

added to Pcat. Note that since the strings are uncompressed and compressed
directly, the memory footprint remains low.

Example 4. The predicate section of HDTcat is:
Pcat

IRI ID
<p1> 1
<p2> 2
<p3> 3

�
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Fig. 1. This figure shows the non-trivial sections that can share an entry. Clearly
SO1 and SO2, S1 and S2, O1 and O2, P1 and P2 can contain common entries. The
other sections that can contain common entries are connected by a double arrow. It is
important to take care of these common entries when merging the dictionaries.

Merging the other sections needs to take into account, however, that some
terms can move to different sections in the HDT files to be merged. For example,
if S1 contains an IRI that appears also in O2. Figure 1 shows the sections that
can contain common elements (excluding the non-trivial cases). The following
cases need to be taken into account:

– If SO1 and S2, or S1 and SO2 contain common entries, then they must be
skipped when joining the S sections.

– If SO1 and O2, or O1 and SO2 contain common entries, then they must be
skipped when joining the O sections.

– If S1 and O2, or O1 and S2 contain common entries then they must be skipped
when joining the S and O sections, and additionally they must be added to
the SOcat section.

For this reason, terms can be assigned to different sections in the final HDT
dictionary. For the example where S1 contains as IRI that appears also in O2,
this IRI should be assigned to the section SOcat, since the IRI will appear both
in the subject and the object of some triples. Figure 2 shows to which sections
the terms can be assigned depending on where they are in the initial dictionaries.

Example 5. The sections of HDTcat different from Pcat look like this:

SOcat

IRI ID
<o2> 1
<so1> 2
<s1> 3

Scat
IRI ID

Ocat

IRI ID
<o1> 4

Note that the IRI <s1> moved from section S1 to section SOcat.

�
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Fig. 2. This figure shows to which sections of the HDTcat dictionary, the entries from
the dictionary section of either HDT1 or HDT2 can move. The SO section and the P
section ids are going to the SOcat and Pcat section respectively. If there is an entry
that appears both in the S section and the O section, then the corresponding entry
will go to the SOcat section. Otherwise the entry goes to the S or O section.

To store the merged sections of HDTcat, since they are written sequentially,
data-structures stored on disk can be used, reducing their memory complexity
to O(1).

When joining the triples in the next step, it will be necessary to know the
correspondence between the IDs in D1 and D2, and the IDs in Dcat. To keep
track of those mappings, we introduce data structures that, for each ID in the
section Sec ∈ {SO1 ,S1 ,O1 ,P1 ,SO2 ,S2 ,O2 ,P2},. assign the new ID in the
corresponding section Seccat ∈ {SOcat ,Scat ,Ocat ,Pcat}. For one section Sec the
data structure contains two arrays:

1. An array indicating, for each ID of Sec, which is the corresponding section
in Seccat.

2. An array mapping the IDs of Sec to the corresponding ID in the section
Seccat.

We indicate every such mapping as M(Sec). Moreover, we construct also the
mappings form SOcat,Scat (note: the IDs of these two sections are consecutive)
to SO1, S1 and SO2, S2 respectively. This consists of two arrays:

1. An array indicating ,for each ID of SOcat or Scat, the corresponding ID in
SO1, S1 (if it exists).

2. An array indicating for each ID of SOcat or Scat, the corresponding ID in
SO2,S2 (if it exists).

The arrays are directly written to disk. We indicate the two mappings as M(cat,1)
and M(cat,2) .

Example 6. The mappings for HDTcat are as follows:



HDTCat: Let’s Make HDT Generation Scale 27

M(SO1 )
ID Seccat IDcat

1 SOcat 2

M(S1 )
ID Seccat IDcat

2 SOcat 3

M(O1 )
ID Seccat IDcat

2 Ocat 4
3 SOcat 1

M(P1 )
ID Seccat IDcat

1 Pcat 1
2 Pcat 2

M(SO2 )
ID Seccat IDcat

1 SOcat 1
2 SOcat 2

M(S2 )
ID Seccat IDcat

M(O2 )
ID Seccat IDcat

3 SOcat 1

M(P2 )
ID Seccat IDcat

1 Pcat 1
2 Pcat 3

M(cat,1)
IDcat IDold

1 -
2 1
3 2

M(cat,2)
IDcat IDold

1 1
2 2
3 -

�

3.2 Joining the Triples

In this section we describe the process to merge the triples T1, T2 in HDTCat.
This process exploits the fact that the triples are ordered only indirectly. That
is, the fact that the HDT files are queriable.

Remember that by Definition 3 the triples need to be ordered first by subjects,
then by predicates, and finally by objects. The order of the subjects is given
by the subjects section in the merged dictionary Scat. Then, for each ID in
Scat, we use the mappings M(S[cat], S[1]) and M(S[cat], S[2]) (constructed when
joining the dictionary sections) to find the IDs ID1 and ID2 of the original
HDT files HDT1 and HDT1 that mapped to IDcat in HDTcat. Since both
HDT1 and HDT2 are queriable, we can retrieve all triples with subjects ID1

and ID2 respectively. By using again the mappings constructed when joining
the dictionaries, we can now translate the IDs of these triples used in HDT1 and
HDT2 to the corresponding IDs in HDTcat. We generate the triples by iterating
over the subjects and by writing the triples directly to disk.

Example 7. Let’s first join the triples with IDcat = 1. According to MCat,2 there
are only triples in HDT2 mapping to it. In fact there is only the triple:
1 2 3
By using the mappings of Example 6 this will become:
1 3 1
For IDcat = 2 we search all triples associated to IDcat = 2. These triples are:
1 1 2
1 1 3
in HDT1 and:
2 2 1
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in HDT2. By using the mappings of Example 6 these correspond to the new IDs:
2 1 3
2 1 1
and:
2 3 1
Note that the triples of HDT1 where initially ordered, while the mapped triples
are not ((2,1,3)>(2,1,1)). The merged triples for IDcat = 2 are then:
2 1 1
2 1 3
2 3 1

�

3.3 Creating the Header

While the dictionary and the triples must be merged from the corresponding
sections of the two HDT files, the header just contain some statistical information
like the number of triples and the number of distinct subjects. This means that
there is nothing to do here except writing the statistics corresponding to Dcat

and Tcat that have been generated.

4 Experiments

In this section we evaluate the performance of HDTCat. In particular we compare
the scalability of HDTCat when generating HDT files (starting from N-Triples
against (1) the regular HDT serialization, using the command line tool rdf2hdt
that is part of the HDT repository2, and (2) HDT-MR. We perform three dif-
ferent experiments to compare how HDTCat performs in different situations.

Experiment 1. We use synthetic data generated using LUBM [8]. LUBM is a
benchmark to test the performance of SPARQL queries and contains both a tool
to generate synthetic RDF data and a set of SPARQL queries. The generated
RDF contains information about universities (like departments, students, pro-
fessors and so on). We generated the following LUBM datasets: (1) from 1000
to 8000 universities in steps of 1000, and (2) from 8000 to 40000 universities in
steps of 4000. We used 3 methods to compress these files to HDT:

– rdf2hdt: We concatenate the LUBM datasets generated to obtain the
datasets of increasing size by steps of 1000 universities up to 8000 univer-
sities, then we increase the steps by 4000 universities. We then used rdf2hdt
to generate the corresponding HDT files.

– HDT-MR: HDT-MR is used in the same way as rdf2hdt, using the same
concatenated files, and then converted to HDT.

2 https://github.com/rdfhdt/hdt-java.

https://github.com/rdfhdt/hdt-java


HDTCat: Let’s Make HDT Generation Scale 29

– HDTCat: We first serialized the generated datasets into HDT, then we
used HDTCat to recursively compute the merged HDT files. I.e., we gener-
ated lubm.1–2.000.hdt from lubm.1–1.000.hdt and lubm.1001–2.000.hdt; then
lubm.1–3.000.hdt from lubm.1–2.000.hdt and lubm.2001–3.000.hdt; and so
on.

We run the experiments for rdf2hdt and HDTCat on different hardware con-
figurations:

– Configuration 1: A server with 128 Gb of RAM, 8 cores of type Intel(R)
Xeon(R) CPU E5–2637 v3 @ 3.50 GHz. RAID-Z3 with 12x HDD 10TB SAS
12Gb/s 7200 RPM. We run hdt2rdf and hdtCat on this configuration. For the
results of HDT-MR we report the ones achieved by [7], that where executed
on a cluster with a total memory of 128 Gb of RAM. While rdf2hdt and
HDTCat are designed to be used on a single server, HDT-MR is designed to
be used on a cluster. To make the results comparable we choose a single node
and a cluster configuration with the same amount of RAM since this is the
limited resource for compressing RDF serializations to HDT.

– Configuration 2: A server with 32 Gb of RAM, 16 cores of type Intel(R)
Xeon(R) CPU E5–2680 0 @ 2.70 GHz. RAID-Z3 with 12x HDD 10TB SAS
12Gb/s 7200 RPM.

– Configuration 3: A desktop computer with 16 Gb of RAM, AMD A8–5600K
with 4 cores. 1x HDD 500GB SCSI 6 Gb/s, 7200 RPM.

Note that while the two first configurations have a RAID deployment with 10
drives, the third one is limited to a single HDD. Since HDTCat is I/O intensive,
this can affect its performance.

The results obtained by the 3 methods on the 3 hardware configurations are
shown in Table 1. It summarizes the comparison between the three methods to
generate HDT from other N-Triples of LUBM datasets. T indicates the time and
M the maximal memory consumption of the process. In the case of HDTCat
we also report Tcom the time to compress the N-Triples into HDT and Tcat

the time to cat the two files together. � indicates that the experiment failed
with an OUT OF MEMORY error. “−” indicates that the experiment was not
performed. This has two reasons. Either a smaller experiment failed with an
OUT OF MEMORY, or the experiment with HDT-MR was not performed on
the corresponding configuration. The experiments in the T com column are very
similar because we compress similar amount of data. We report the average times
of these experiments and indicated that with “∗”.

The results for Configuration 1 show that while hdt2rdf fails to compress
lubm-12000, by using HDTCat we are able to compress lubm-40000. This means
that one can compress at least as much as the HDT-MR implementation. Note
that lubm-40000 does not represent an upper bound for both methods. For lubm-
8000, HDT-MR is 121% faster then HDTCat. This is expected since HDT-MR
exploits parallelism while HDTCat does not. Moreover while the single node
configuration has HDD disks, the cluster configuration used SSD disks. For
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Table 1. Comparison between methods to serialize RDF into HDT.

Configuration 1: 128 Gb RAM

LUBM Triples hdt2rdf HDT-MR HDTCat

T (s) M (Gb) T (s) T com (s) T cat (s) T (s) M cat (Gb)

1000 0.13BN 1856 53.4 936 970∗ – – —

2000 0.27BN 4156 70.1 1706 317 2257 26.9

3000 0.40BN 6343 89.3 2498 468 3695 35.4

4000 0.53BN 8652 105.7 3113 620 5285 33.8

5000 0.67BN 11279 118.9 4065 803 7058 41.7

6000 0.80BN 23595 122.7 4656 932 8960 47.5

7000 0.93BN 78768 123.6 5338 1088 11018 52.9

8000 1.07BN � � 6020 1320 13308 58.7

12000 1.60BN – – 9499 4710∗ 1759 19777 54.7

16000 2.14BN — – 13229 2338 26825 73.4

20000 2.67BN – – 15720 2951 34486 90.5

24000 3.20BN – – 26492 3593 42789 90.6

28000 3.74BN – – 36818 4308 51807 84.9

32000 4.27BN – – 40633 4849 61366 111.1

36000 4.81BN – – 48322 6085 72161 109.4

40000 5.32BN – – 55471 7762 84633 100.1

Configuration 2: 32 Gb RAM

LUBM Triples HDT - HDTCat

T (s) M (Gb) - T com (s) T cat (s) T (s) M cat (Gb)

1000 0.13BN 1670 28.3 - 1681∗ – – –

2000 0.27BN � � - 454 3816 17.3

3000 0.40BN — – – 660 6366 20.1

4000 0.53BN – – — 869 8916 25.5

5000 0.67BN – – – 1097 11694 29.3

6000 0.80BN – – – 1345 14720 28.5

7000 0.93BN – – – 1584 17985 30.6

8000 1.07BN – – – 1830 21496 30.4

12000 1.60BN – – – � 2748 - 31.0

16000 2.14BN – – – – 3736 — 31.1

20000 2.67BN – – – – 5007 – 30.5

24000 3.20BN – – – – 5514 – 30.8

28000 3.74BN – – – – 6568 – 30.8

32000 4.27BN – – – – 7358 – 30.8

36000 4.81BN – – – – 9126 – 30.6

40000 5.32BN – – – – 9711 – 30.8
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Table 1. (continued)

Configuration 3: 16 Gb RAM

LUBM Triples HDT - HDTCat

T (s) M (Gb) – T com (s) T cat (s) T (s) M cat (Gb)

1000 0.13BN 2206 14.5 – 2239* – – –

2000 0.27BN � � – 517 4995 10.7

3000 0.40BN – – – 848 8082 11.8

4000 0.53BN – – – 1301 11622 11.9

5000 0.67BN – – – 1755 15616 12.7

6000 0.80BN – – – 2073 19928 11.8

7000 0.93BN – – – 2233 24400 12.6

8000 1.07BN – – – 3596 30235 12.2

12000 1.60BN – – – � 4736 – 14.3

16000 2.14BN – – – – 6640 – 14.3

20000 2.67BN – – – – 9058 – 14.4

24000 3.20BN – – – – 10102 – 14.3

28000 3.74BN – – – – 13287 – 12.8

32000 4.27BN – – – – 14001 – 13.9

36000 4.81BN – – – – 17593 – 14.0

40000 5.32BN – – – – 19929 – 13.9

lubm-40000 the speed advantage reduces, HDT-MR is 52% faster then HDT-
Cat. The results for Configuration 2 show that the speed of hdtCat to compress
lubm-40000 in comparison to Configuration 1 is reduced, but only by 25%. The
results for Configuration 3 show that it is possible to compress on a 16 Gb
machine HDT files containing 5 Billion triples. In particular this means that
it is possible to index on a 16Gb machine an RDF file with 5 Billion triples
and construct a SPARQL endpoint on top. This is unfeasible for every other
SPARQL endpoint implementation we are aware of. Moreover this also shows
that for Configuration 1, lubm-4000 is far from being an upper bound so that
potentially huge RDF files can be indexed, which was not imaginable before.

Experiment 2. While the above results are using the synthetic data provided
by LUBM we also performed an experiment using real datasets. In particular
we join the Wikidata dump of the 19-02-2018 (330G in ntriple format) and the
2016 DBpedia dump3 (169G in ntriple format). This corresponds to 3.5 billion

3 All files retrieved by: wget -r -nc -nH –cut-dirs=1 -np -l1 -A ‘*ttl.bz2’ -A ‘*.owl’-
R ‘*unredirected*’–tries 2 http://downloads.dbpedia.org/2016-10/core-i18n/en/,
i.e. all files published in the english DBpedia. We exclude the following files:
nif page structure en.ttl, raw tables en.ttl and page links en.ttl since they do not
contain typical data used in application relying on DBpedia.
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triples. We where able to join the corresponding HDT file in 143 min and 36 s
using a 32 Gb RAM machine. The maximal memory consumption was 27.05 Gb.

Experiment 3. Note that Wikidata and DBpedia are not sharing many IRIs.
So one valid argument is if HDTCat is also performing well when the two
joined HDT files contain many common IRIs. To test this we randomly sorted
the lubm.2.000.nt file and split it in two files containing the same amount of
triples. We then join them using HDTCat. While joining lubm.1–1000.hdt and
lubm.1001–2000.hdt took 287 s, joining the randomly sorted files took 431 s.
This corresponds to a 66% increase of time which is expected. This shows that
HDTCat is still performing well in such a scenario.

Code. The code for HDTCat is currently part of the HDT code repository
available under https://github.com/rdfhdt/hdt-java. The code is released under
the Lesser General Public License as the existing Java code. We also provide a
command line tool, called rdf2hdtcat, that allows to compress HDT in a divide
and conquer method (pull request #109) to easily serialize big RDF file to HDT.

5 Conclusion and Future Work

In this paper we have presented HDTCat, an algorithm and command line tool
to merge two HDT files with improved time and memory efficiency. We have
described in detailed how the algorithm works and we have compared our imple-
mentation against the other two available alternatives: regular HDT serialization
and HDT-MR, a MapReduce-based designed to tackle scalability in HDT seri-
alization. The experiments shows that it is possible to compress 5 billion triples
on a 16 Gb machine which was not imaginable before.

Our future work include the creating of a tool that combines rdf2hdt and
HDTCat to parallelize RDF serialization into HDT to generate HDT files faster.
Moreover we are working on extending HDTCat to be able to merge an arbitrary
number of HDT files simultaneously.

In the long term, we plan to work in the use of HDTCat to support updates
on HDT-based tools. A strategy is to have a read-only index and to store the
updates in a delta structure that is periodically merged (with HDTCat) with
the read-only part.

Finally we believe that HDTCat will enable the Semantic Web Community
to tackle scenarios which were non feasible before because of scalability.
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