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Abstract. HDT a is binary RDF serialization aiming at minimizing the
space overheads of traditional RDF formats, while providing retrieval
features in compressed space. Several HDT-based applications, such as
the recent Linked Data Fragments proposal, leverage these features for
diverse publication, interchange and consumption purposes. However,
scalability issues emerge in HDT construction because the whole RDF
dataset must be processed in a memory-consuming task. This is hindering
the evolution of novel applications and techniques at Web scale. This
paper introduces HDT-MR, a MapReduce-based technique to process
huge RDF and build the HDT serialization. HDT-MR performs in linear
time with the dataset size and has proven able to serialize datasets up to
several billion triples, preserving HDT compression and retrieval features.

1 Introduction

The Resource Description Framework (RDF) was originally proposed as a data
model for describing resources in the Web [12], and has evolved into a standard
for data interchange in the emergent Web of (Linked) Data. RDF has been
widely used in the last years, specially under the Linked Open Data initiative,
where it shows its potential for integrating non-structured and semi-structured
data from several sources and many varied fields of knowledge. This flexibility
is obtained by structuring information as triples: (i) the subject is the resource
being described; (ii) the predicate gives a property about the resource; and (iii)
the object sets the value of the description. A set of RDF triples is a labeled
directed graph, with subjects and objects as nodes, and predicates as edges.

This “graph view” is a mental model that helps to understand how infor-
mation is organized in RDF, but triples must be effectively serialized in some
way for storage and/or interchange. The World Wide Web Consortium (W3C)
Working Group addresses this need in the last RDF Primer proposal3. The con-
sidered RDF serialization formats (JSON-LD, RDF/XML or Turtle-based ones)
provide different ways of writing down RDF triples, yet all of them serialize
an RDF graph as plain text. This is a double-edged sword. On the one hand,

3 http://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624



serialization is an easy task with no much processing overhead. On the other
hand, the resulting serialized files tend to be voluminous because of the ver-
bosity underlying to these formats. Although any kind of universal compressor
(e.g. gzip) reduces space requirements for RDF storage and interchange purposes
[6], space overheads remain a problem when triples are decompressed for con-
sumption (parsing, searching, etc.). This situation is even more worrying because
end-users have, in general, less computational resources than publishers.

HDT (Header-Dictionary-Triples) is an effective alternative for RDF serial-
ization. It is a binary format which reorganizes RDF triples in two main com-
ponents. The Dictionary organizes all terms used in triples and maps them to
numerical identifiers. This decision allows the original graph to be transformed
into a graph of IDs encoded by the Triples component. Built-in indexes, in both
components, allow RDF triples to be randomly retrieved in compressed space. In
other words, HDT outputs more compact files than the aforementioned formats
and also enables RDF triples to be efficiently accessed without prior decompres-
sion [13]. This fact makes HDT an ideal choice to play as storage engine within
semantic applications. HDT-FoQ [13] illustrates how HDT can be used for ef-
ficient triple pattern and SPARQL join resolution, while WaterFowl [4] goes a
step further and provides inference on top of HDT foundations. This notion of
HDT-based store is deployed in applications such as Linked Data Fragments [18],
the SemStim recommendation system [8] or the Android app HDTourist [9].

Nevertheless, these achievements are at the price of moving scalability issues
to the publishers, or data providers in general. Serializing RDF into HDT is
not as simple as with plain formats, given that the whole dataset must be ex-
haustively processed to obtain the Dictionary and Triples components. Current
HDT implementations demand not negligible amounts of memory, so the HDT
serialization lacks of scalability for huge datasets (e.g. those having hundreds of
millions or billions of triples). Although these datasets are currently uncommon,
semantic publication efforts on emerging data-intensive areas (such as biology or
astronomy) or integrating several sources into heterogeneous mashups (as RDF
excels at linking data from diverse datasets) are starting to face this challenge.

This paper improves the HDT workflow by introducing MapReduce [5] as
the computation model for large HDT serialization. MapReduce is a framework
for the distributed processing of large amounts of data, and it can be considered
as de facto standard for Big Data processing. Our MapReduce-based approach,
HDT-MR, reduces scalability issues arising to HDT generation, enabling larger
datasets to be serialized for end-user consumption. We perform evaluations scal-
ing up to 5.32 billion triples (10 times larger than the largest dataset serialized
by the original HDT), reporting linear processing times to the dataset size. This
states that HDT-MR provides serialization for RDF datasets of arbitrary size
while preserving both the HDT compression and retrieval features [13, 6].

The rest of the paper is organized as follows. Section 2 summarizes the back-
ground required to understand our approach, which is fully described in Section
3. Section 4 reports experimental results about HDT-MR. Finally, Section 5
concludes about HDT-MR and devises some future work around it.



2 Background

This section provides background to understand our current approach. We give
basic notions about MapReduce and explain HDT foundations. Then, we com-
pare HDT to the current state of the art of RDF compression.

2.1 MapReduce

MapReduce [5] is a framework and programming model to process large amounts
of data in a distributed way. Its main purpose is to provide efficient parallelization
while abstracting the complexity of distributed processing. MapReduce is not
schema-dependent; unstructured and semi-structured can be processed, at the
price of parsing every item [11]. A MapReduce job comprises two phases. The
first phase, map, reads the data as pairs key-value (k1, v1) and outputs another
series of pairs key-value of different domain (k2, v2). The second phase, reduce,
processes the list of values v2, related to each key k2, and produces a final list
of output values v2 pertaining to the same domain. Many tasks are launched on
each phase, all of them processing a small piece of the input data. The following
scheme illustrates input and output data to be processed in each phase:

map: (k1, v1) → list(k2, v2)
reduce: (k2, list(v2)) → list(v2)

MapReduce relies on a master/slave architecture. The master initializes the
process, distributes the workload among the cluster and manages all bookkeep-
ing information. The slaves (or workers) run map and reduce tasks. The workers
commonly store the data using a distributed filesystem based on the GFS (Google
File System) model, where data are split in small pieces and stored in different
nodes. This allows workers to leverage data locality as much as possible, read-
ing data from the same machine where the task runs [5]. MapReduce performs
exhaustive I/O operations. The input of every task is read from disk, and the
output is also written on disk. It is also intensive in bandwidth usage. The map

output must be transferred to reduce nodes and, even if most of the map tasks
read their data locally, part of them must be gathered from other nodes.

Apache Hadoop4 is currently the most used implementation of MapReduce.
It is designed to work in heterogeneous clusters of commodity hardware. Hadoop
implements HDFS (Hadoop Distributed File System), as distributed filesystem
providing data replication. It replicates each split of data in a number of nodes
(commonly three), improving data locality and also providing fault tolerance.

2.2 HDT

HDT5 [6] is a binary serialization format optimized for RDF storage and trans-
mission. Besides, HDT files can be mapped to a configuration of succinct data
structures which allows the inner triples to be searched and browsed efficiently.

4 http://hadoop.apache.org/
5 HDT is a W3C Member Submission: http://www.w3.org/Submission/HDT/
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Fig. 1. HDT Dictionary and Triples configuration for an RDF graph.

HDT encodes RDF into three components carefully described to address
RDF peculiarities within a Publication-Interchange-Consumption workflow. The
Header (H) holds the dataset metadata, including relevant information for dis-
covering and parsing, hence serving as an entry point for consumption. The
Dictionary (D) is a catalogue that encodes all the different terms used in the
dataset and maps each of them to a unique identifier: ID. The Triples (T) com-
ponent encodes the RDF graph as a graph of IDs, i.e. representing tuples of three
IDs. Thus, Dictionary and Triples address the main goal of RDF compactness.
Figure 1 shows how the Dictionary and Triples components are configured for a
simple RDF graph. Each component is detailed below.

Dictionary. This component organizes the different terms in the graph according
to their role in the dataset. Thus, four sections are considered: the section SO

manages those terms playing both as subject and object, and maps them to the
range [1, |SO|], being |SO| the number of different terms acting as subject
and object. Sections S and O comprise terms that exclusively play subject and
object roles respectively. Both sections are mapped from |SO|+1, ranging up
to |SO|+|S| and |SO|+|O| respectively, where |S| and |O| are the number of
exclusive subjects and objects. Finally, section P organizes all predicate terms,
which are mapped to the range [1, |P|]. It is worth noting that no ambiguity
is possible once we know the role played by the corresponding ID.

Each section of the Dictionary is independently encoded to grasp its partic-
ular features. This allows important space savings to be achieved by considering
that this sort of string dictionaries are highly compressible [14]. Nonetheless,
efficient encoding of string dictionaries [2] is orthogonal to the current problem,
hence it is not addressed in this paper.

Triples. This component encodes the structure of the RDF graph after ID sub-
stitution. That is, RDF triples are encoded as groups of three IDs (ID-triples
hereinafter): (ids idp ido), where ids, idp, and ido are respectively the IDs of
the corresponding subject, predicate, and object terms in the Dictionary. The



Triples component organizes all triples into a forest of trees, one per differ-
ent subject: the subject is the root; the middle level comprises the ordered list
of predicates reachable from the corresponding subject; and the leaves list the
object IDs related to each (subject, predicate) pair. This underlying representa-
tion (illustrated in Figure 1) is effectively encoded following the BitmapTriples
approach [6]. In brief, it comprises two sequences: Sp and So, concatenating re-
spectively all predicate IDs in the middle level and all object IDs in the leaves;
and two bitsequences: Bp and Bo, which are respectively aligned with Sp and So,
using a 1-bit to mark the end of each list.

Building HDT. Once Dictionary and Triples internals have been described,
we proceed to summarize how HDT is currently built6. Remind that this process
is the main scalability bottleneck addressed by our current proposal.

To date, HDT serialization can be seen as a three-stage process:

– Classifying RDF terms. This first stage performs a triple-by-triple parsing
(from the input dataset file) to classify each RDF term into the corresponding
Dictionary section. To do so, it keeps a temporal data structure, consisting
of three hash tables storing subject-to-ID, predicate-to-ID, and object-to-
ID mappings. For each parsed triple, its subject, predicate, and object are
searched in the appropriate hash, obtaining the associated ID if present.
Terms not found are inserted and assigned an auto-incremental ID. These
IDs are used to obtain the temporal ID-triples (ids idp ido) representation
of each parsed triple, storing all them in a temporary ID-triples array. At the
end of the file parsing, subject and object hashes are processed to identify
terms playing both roles. These are deleted from their original hash tables
and inserted into a fourth hash comprising terms in the SO section.

– Building HDT Dictionary. Each dictionary section is now sorted lexico-
graphically, because prefix-based encoding is a well-suited choice for com-
pressing string dictionaries [2]. Finally, an auxiliary array coordinates the
previous temporal ID and the definitive ID after the Dictionary sorting.

– Building HDT Triples. This final stage scans the temporary array storing
ID-triples. For each triple, its three IDs are replaced by their definitive IDs
in the newly created Dictionary. Once updated, ID-triples are sorted by
subject, predicate and object IDs to obtain the BitmapTriples streams. In
practice, it is a straightforward task which scans the array to sequentially
extract the predicates and objects into the Sp and So sequences, and denoting
list endings with 1-bits in the bitsequences.

2.3 Related work

HDT was designed as a binary serialization format, but the optimized encodings
achieved by Dictionary and Triples components make HDT also excels as RDF
compressor. Attending to the taxonomy from [16], HDT is a syntactic compressor

6 HDT implementations are available at http://www.rdfhdt.org/development/



because it detects redundancy at serialization level. That is, the Dictionary re-
duces symbolic redundancy from the terms used in the dataset, while the Triples
component leverages structural redundancy from the graph topology.

To the best of our knowledge, the best space savings are reported by syn-
tactic compressors. Among them, k2-triples [1] is the most effective approach. It
performs a predicate-based partition of the dataset into subsets of pairs (sub-
ject, object), which are then encoded as sparse binary matrices (providing direct
access to the compressed triples). k2-triples achievements, though, are at the
cost of exhaustive time-demanding compression processes that also need large
amounts of main memory. On the other hand, logical compressors perform dis-
carding triples that can be inferred from others. Thus, they achieve compression
because only encode a “primitive” subset of the original dataset. Joshi et al. [10]
propose a technique which prunes more than 50% of the triples, but it does not
achieve competitive numbers regarding HDT, and its compression process also
reports longer times. More recently, Pan, et al. [16] propose an hybrid compres-
sor leveraging syntactic and semantic redundancy. Its space numbers slightly
improves the less-compressed HDT configurations, but it is far from k2-triples.
It also shows non-negligible compression times for all reported datasets.

Thus, the most prominent RDF compressors experience lack of scalability
when compressing large RDF datasets. This issue has already been addressed
by using distributed computation. Urbani et al. [17] propose an algorithm based
on dictionary encoding. They perform a MapReduce job to create the dictionary,
where an ID is assigned to each term. The output of this job are key-value pairs,
where the key is the ID and the value contains the triple identifier to which the
term belongs, and its role on it. Then, another MapReduce job groups by triple
and substitutes the terms by their ID. This work makes special emphasis on how
RDF skewness can affect MapReduce performance, due to the fact that many
terms can be grouped and sent to the same reducer. To avoid this problem,
a first job is added, where the input data are sampled and the more popular
terms are given their ID before the process starts. Finally, Cheng et al. [3] also
perform distributed RDF compression on dictionary encoding. They use the
parallel language X10, and report competitive results.

3 HDT-MR

This section describes HDT-MR, our MapReduce-based approach to serialize
large RDF datasets in HDT. Figure 2 illustrates the HDT-MR workflow, con-
sisting in two stages: (1) Dictionary Encoding (top) and (2) Triples Encoding
(bottom), described in the following subsections. The whole process assumes the
original RDF dataset is encoded in N-Triples format (one statement per line).

3.1 Process 1: Dictionary Encoding

This first process builds the HDT Dictionary from the original N-Triples dataset.
It can be seen as a three-task process of (i) identifying the role of each term in



Fig. 2. HDT-MR workflow.

the dataset, (ii) obtaining the aforementioned sections (SO, S, O, and P) in
lexicographic order, and (iii) effectively encoding the Dictionary component.

We design HDT-MR to perform these three tasks as two distributed MapRe-
duce jobs and a subsequent local process (performed by the master node), as
shown in Figure 2. The first job performs the role identification, while the second
is needed to perform a global sort. Finally, the master effectively encodes the
Dictionary component. All these sub-processes are further described below.

Job 1.1: Roles Detection. This job parses the input N-Triples file to detect
all roles played by RDF terms in the dataset. First, mappers perform a triple-
by-triple parsing and output (key,value) pairs of the form (RDF term, role), in
which role is S (subject), P (predicate) or O (object), according to the term posi-
tion in the triple. It is illustrated in Figure 3, with two processing nodes perform-
ing on the RDF used in Figure 1. For instance, (ex:P1,S), (ex:worksFor,P), and
(ex:D1,O) are the pairs obtained for the triple (ex:P1, ex:worksFor, ex:D1).

These pairs are partitioned and sorted among the reducers, which group
the different roles played by a term. Note that RDF terms including roles S

and O, result in pairs (RDF term, SO). Thus, this job outputs a number of
lexicographically ordered lists (RDF term, roles); there will be as many lists as
reducers on the cluster. Algorithm 1 shows the pseudo-code of these jobs.

Finally, it is important to mention that a combiner function is used at the
output of each map. This function is executed on each node node before the map
transmits its output to the reducers. In our case, if a mapper emits more than
one pair (RDF term, role) for a term, all those pairs are grouped into a single
one comprising a list of all roles. It allows the bandwidth usage to be decreased
by grouping pairs with the same key before transferring them to the reducer.

Job 1.2: RDF Terms Sectioning. The previous job outputs several lists of
pairs (RDF term, roles), one per reduce of previous phase, each of them sorted
lexicographically. However, the construction of each HDT Dictionary section
requires a unique sorted list. Note that a simple concatenation of the output lists
would not fulfill this requirement, because the resulting list would not maintain



Fig. 3. Example of Dictionary Encoding: roles detection (Job 1.1).

Algorithm 1 Dictionary Encoding: roles detection (Job 1.1)
function map(key,value) ⊲ key: line number (discarded) ⊲ value: triple

emit(value.subject, ”S”)
emit(value.predicate, ”P”)
emit(value.object, ”O”)

end function

function combine/reduce(key,values) ⊲ key: RDF term ⊲ value: roles (S, P, and/or O)
for role in values do

if role contains ”S” then isSubject← true

else if role contains ”P” then isPredicate← true

else if role contains ”O” then isObject← true

end if

end for

roles← ””
if isSubject then append(roles, ”S”)
else if isPredicate then append(roles, ”P”)
else if isObject then append(roles, ”O”)
end if

emit(key, roles)
end function

a global order. The reason behind this behavior is that, although the input
of each reducer is sorted before processing, the particular input transmitted
to each reducer is autonomously decided by the framework in a process called
partitioning. By default, Hadoop hashes the key and assigns it to a given reducer,
promoting to obtain partitions of similar sizes. Thus, this distribution does not
respect a global order of the input. While this behavior may be changed to assign
the reducers a globally sorted input, this is not straightforward.

A näıve approach would be to use a single reducer, but this would result
extremely inefficient: the whole data had to be processed by a single machine,
losing most of the benefits of distributed computing that MapReduce provides.
Another approach is to manually create partition groups. For instance, we could
send terms beginning with the letters from a to c to the first reducer, terms



Fig. 4. Example of Dictionary Encoding: RDF terms sectioning (Job 1.2).

Algorithm 2 Dictionary Encoding: RDF terms sectioning (Job 1.2)
function reduce(key,value) ⊲ key: RDF term ⊲ value: roles (S, P, and/or O)

for resource in values do

if resource contains ”S” then isSubject← true

else if resource contains ”P” then isPredicate← true

else if resource contains ”O” then isObject← true

end if

end for

output← ””
if isSubject & isObject then emit to SO(key, null)
else if isSubject then emit to S(key, null)
else if isPredicate then emit to P (key, null)
else if isObject then emit to O(key, null)
end if

end function

beginning with the letters from d to f to the second reducer, and so on. However,
partitions must be chosen with care, or they could be the root of performance
issues: if partitions are of very different size, the job time will be dominated by
the slowest reducer (that is, the reducer that receives the largest input). This
fact is specially significant for RDF processing because of its skewed features.

HDT-MR relies on the simple but efficient solution of sampling input data
to obtain partitions of similar size. To do so, we make use of the TotalOrder-
Partitioner of Hadoop. It is important to note that this partitioning cannot be
performed while processing a job, but needs to be completed prior of a job ex-
ecution. Note also that the input domain of the reducers needs to be different
from the input domain of the job to identify and group the RDF terms (that is,
the job receives triples, while the reducers receive individual terms and roles).

All these reasons conforms the main motivation to include this second MapRe-
duce job to globally sort the output of the first job. This job takes as input the
lists of (RDF term, roles) obtained in the precedent job, and uses role values to
sort each term in its corresponding list. In this case, identity mappers deliver
directly their input (with no processing) to the reducers, which send RDF terms
to different outputs depending on their role. Figure 4 illustrates this job. As only



Algorithm 3 Triples Encoding: ID-triples serialization (Job 2.1)
function map(key,value) ⊲ key: line number (discarded) ⊲ value: triple

emit(value.subject, dictionary.id(value.subject)
emit(value.predicate, dictionary.id(value.predicate))
emit(value.object, dictionary.id(value.object))

end function

the term is needed, a pair (RDF term, null ) is emitted for each RDF term (nulls
are omitted on the outputs). We obtain as many role-based lists as reducers in
the cluster, but these are finally concatenated to obtain four sorted files, one per
Dictionary section.The pseudo-code for this job is described in Algorithm 2.

Local sub-process 1.3: HDT Dictionary Encoding This final stage per-
forms locally in the master node, encoding dictionaries for the four sections
obtained from the MapReduce jobs. It means that each section is read line-per-
line, and each term is differentially encoded to obtain a Front-Coding dictionary
[2], providing term-ID mappings. It is a simple process with no scalability issues.

3.2 Process 2: Triples Encoding

This second process parses the original N-Triples dataset to obtain, in this case,
the HDT Triples component. The main tasks for such Triples encoding are (i)
replacing RDF terms by their ID in the Dictionary, and (ii) getting the ID-
triples encoding sorted by subject, predicate and object IDs. As in the previous
process, HDT-MR accomplishes these tasks by two MapReduce jobs and a final
local process (see the global overview in Figure 2), further described below.

Job 2.1: ID-triples serialization This first job replaces each term by its
ID. To do so, HDT-MR first transmits and loads the –already compressed and
functional– Dictionary (encoded in the previous stage) in all nodes of the cluster.
Then, mappers parse N-Triples and replace each term by its ID in the Dictionary.
Identity reducers simply sort incoming data and output a list of pairs (ID-triple,
null ). We can see this process in action in Figure 5, where the terms of each
triple are replaced by the IDs given in the previous example (note that nulls
are omitted on the outputs). The output of this job is a set of lexicographically
ordered lists of ID-Triples; there will be as many lists as reducers on the cluster.
The pseudo-code of this job is illustrated in Algorithm 3 .

Job 2.2: ID-triples Sorting Similarly to the first process, Triples Encoding
requires of a second job to sort the outputs. Based on the same premises, HDT-
MR makes use of Hadoop TotalOrderPartitioner to sample the output data from
the first job, creating partitions of a similar size as input for the second job. Then,
this job reads the ID-triples representation generated and sorts it by subject,
predicate and object ID. This is a very simple job that uses identity mappers



Fig. 5. Example of Triples Encoding: ID-triples Serialization (Job 2.1).

Fig. 6. Example of Triples Encoding: ID-triples Sorting (Job 2.2)

and reducers. As in the previous job, ID-triples are contained in the key and the
value is set to null. In fact, all the logic is performed by the framework in the
partitioning phase between map and reduce, generating similar size partitions
of globally sorted data. Figure 6 continues with the running example and shows
the actions performed by this job after receiving the output of the previous job
(note again that nulls are omitted on the outputs).

Local sub-process 2.3: HDT Triples Encoding This final stage encodes
the ID-triples list (generated by the previous job) as HDT BitmapTriples [6].
It is performed locally in the master node as in the original HDT construction.
That is, it sequentially reads the sorted ID-triples to build the sequences Sp and
So, and the aligned bitsequences Bp and Bo, with no scalability issues.

4 Experimental Evaluation

This section evaluates the performance of HDT-MR, the proposed MapReduce-
based HDT construction, and compares it to the traditional single-node ap-



Machine Configuration
Single

Intel Xeon E5-2650v2 @ 2.60GHz (32 cores), 128GB RAM. Debian 7.8
Node

Master Intel Xeon X5675 @ 3.07 GHz (4 cores), 48GB RAM. Ubuntu 12.04.2
Slaves Intel Xeon X5675 @ 3.07 GHz (4 cores), 8GB RAM. Debian 7.7

Table 1. Experimental setup configuration.

Size (GB)
Dataset Triples |SO| |S| |O| |P| NT NT+lzo HDT HDT+gz
LinkedGeoData 0.27BN 41.5M 10.4M 80.3M 18.3K 38.5 4.4 6.4 1.9
DBPedia 0.43BN 22.0M 2.8M 86.9M 58.3K 61.6 8.6 6.4 2.7
Ike 0.51BN 114.5M 0 145.1K 10 100.3 4.9 4.8 0.6
Mashup 1.22BN 178.0M 13.2M 167.2M 76.6K 200.3 18.0 17.1 4.6

LUBM-1000 0.13BN 5.0M 16.7M 11.2M 18 18.0 1.3 0.7 0.2
LUBM-2000 0.27BN 10.0M 33.5M 22.3M 18 36.2 2.7 1.5 0.5
LUBM-3000 0.40BN 14.9M 50.2M 33.5M 18 54.4 4.0 2.3 0.8
LUBM-4000 0.53BN 19.9M 67.0M 44.7M 18 72.7 5.3 3.1 1.0
LUBM-5000 0.67BN 24.9M 83.7M 55.8M 18 90.9 6.6 3.9 1.3
LUBM-6000 0.80BN 29.9M 100.5M 67.0M 18 109.1 8.0 4.7 1.6
LUBM-7000 0.93BN 34.9M 117.2M 78.2M 18 127.3 9.3 5.5 1.9
LUBM-8000 1.07BN 39.8M 134.0M 89.3M 18 145.5 10.6 6.3 2.2
LUBM-12000 1.60BN 59.8M 200.9M 133.9M 18 218.8 15.9 9.6 2.9
LUBM-16000 2.14BN 79.7M 267.8M 178.6M 18 292.4 21.2 12.8 3.8
LUBM-20000 2.67BN 99.6M 334.8M 223.2M 18 366.0 26.6 16.3 5.5
LUBM-24000 3.74BN 119.5M 401.7M 267.8M 18 439.6 31.9 19.6 6.6
LUBM-28000 3.74BN 139.5M 468.7M 312.4M 18 513.2 37.2 22.9 7.7
LUBM-32000 4.27BN 159.4M 535.7M 357.1M 18 586.8 42.5 26.1 8.8
LUBM-36000 4.81BN 179.3M 602.7M 401.8M 18 660.5 47.8 30.0 9.4
LUBM-40000 5.32BN 198.4M 666.7M 444.5M 18 730.9 52.9 33.2 10.4

Table 2. Statistical dataset description.

proach. We have developed a proof-of-concept HDT-MR prototype (under the
Hadoop framework: version 1.2.1) which uses the existing HDT-Java library7

(RC-2). This library is also used for the baseline HDT running on a single node.

The experimental setup is designed as follows (see Table 1). On the one
hand, we use a powerful computational configuration to implement the role of
data provider running HDT on a single node. On the other hand, we deploy HDT-
MR using a potent master and 10 slave nodes running on a more memory-limited
configuration. This infrastructure tries to simulate a computational cluster in
which further nodes may be plugged to process huge RDF datasets. For a fair
comparison, the amount of main memory in the single node is the same as the
total memory available for the full cluster of Hadoop.

Regarding datasets, we consider a varied configuration comprising real-
world and synthetic ones. All of them are statistically described in Table 2.
Among the real-world ones, we choose them based on their volume and vari-
ety, but also attending to their previous uses for benchmarking. Ike8 comprises
weather measurements from the Ike hurricane; LinkedGeoData9 is a large geo-
spatial dataset derived from Open Street Map; and DBPedia 3.810 is the well-
known knowledge base extracted from Wikipedia. We also join these real-world

7 http://code.google.com/p/hdt-java/
8 http://wiki.knoesis.org/index.php/LinkedSensorData
9 http://linkedgeodata.org/Datasets, as for 2013-07-01

10 http://wiki.dbpedia.org/Downloads38



Fig. 7. Serialization times: HDT-Java vs HDT-MR.

Fig. 8. Serialization times: HDT-MR.

datasets in a mashup which comprises all data from the three data sources. On
the other hand, we use the LUBM [7] data generator to obtain synthetic datasets.
We build “small datasets” from 1,000 (0.13 billion triples) to 8,000 universities
(1.07 billion triples). From the latter, we build datasets of incremental size (4,000
universities: 0.55 billion triples) up to 40,000 universities (5.32 billion triples).

Table 2 also shows original dataset sizes both in plain NTriples (NT) and
compressed with lzo. It is worth noting that HDT-MR uses lzo to compress the
datasets before storing them in HDFS. This format allows for compressed data
to be split among the reducers, and provides storage and reading speed improve-
ments [15]. As can be seen, our largest dataset uses 730.9 GB in NTriples, and
this spaces is reduced up to 52.9 GB with lzo compression.

Figure 7 compares serialization times for HDT-Java and HDT-MR, while
Figure 8 shows HDT-MR serialization times for those datasets where HDT-Java
is unable to obtain the serialization. These times are averaged over three in-
dependent serialization processes for each dataset. As can be seen, HDT-Java
reports an excellent performance on real-world datasets, while our current ap-
proach only achieves a comparable time for Ike. This is an expected result be-
cause HDT-Java runs the whole process in main-memory while HDT-MR relies
on I/O operations. However, HDT-Java crashes for the mashup because the 128
GB of available RAM are insufficient to process such scale in the single node.
The situation is similar for the LUBM datasets: HDT-Java is the best choice
for the smallest datasets, but the difference decreases with the dataset size and
HDT-MR shows better results from LUBM-5000 (0.67 billion triples). HDT-Java
fails to process datasets from LUBM-8000 (1.07 billion triples) because of mem-
ory requirements. This is the target scenario for HDT-MR, which scales to the



LUBM-40000 without issues. As can be seen in both figures, serialization times
increase linearly with the dataset size, and triples encoding remains the most
expensive stage.

RDF compression is not the main purpose of this paper, but it is worth
emphasizing HDT space numbers, as previous literature does not report com-
pression results for such large datasets. These numbers are also summarized in
Table 2. HDT always reports smaller sizes than the original datasets compressed
with lzo. For instance, HDT serializes LUBM-40000 using 19.7 GB less than
NT+lzo. The difference increases when compressed with gzip. For LUBM-40000,
HDT+gz uses 42.5 GB less than NT+lzo. In practice, it means that HDT+gz uses
5 times less space than NT+lzo. Finally, it is worth remembering that HDT-MR
obtains the same HDT serialization than a mono-node solution, hence achieving
the same compression ratio and enabling the same query functionality. Source
code and further details on HDT-MR are available at the HDT-MR project11.

5 Conclusions and Future Work

HDT is gaining increasing attention, positioning itself as the de facto baseline
for RDF compression. Latest practical applications exploit the HDT built-in in-
dexes for RDF retrieval with no prior decompression, making HDT evolve to
a self-contained RDF store. In this paper we introduce HDT-MR, a technique
tackling scalability issues arising to HDT construction at very large scale. HDT-
MR lightens the previous heavy memory-consumption burden by moving the
construction task to the MapReduce paradigm. We present the HDT-MR dis-
tributed workflow, evaluating its performance against the mono-node solution
in huge real-world and benchmarking RDF datasets, scaling up to more than
5 billion triples. Results show that HDT-MR is able to scale up to an arbi-
trary size in commodity clusters, while the mono-node solution fails to process
datasets larger than 1 billion triples. Thus, HDT-MR greatly reduces hardware
requirements for processing Big Semantic Data.

Our future work focuses on two directions. First, we plan to exploit HDT-MR
achievements as these can be directly reused by the HDT community, fostering
the development of novel applications working at very large scale. Finally, our
research consider to combine HDT and MapReduce foundations to work together
on other Big Semantic Data tasks, such as querying and reasoning.
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