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Abstract — In this paper we present the design of Fuzzy Adaptive
System Ellipsoid ARTMAP (FASEAM), a novel neural
architecture based on Ellipssid ARTMAP (EAM) that is
equipped with concepts utilized in the Fuzzy Adaptive System
ART (FASART) architecture. More specifically, we derive a new
category choice function appropriate for EAM categories that is
non-constant in a category’s representation region. Additionally,
we augment the EAM category description with a centroid
vector, whose learning rate is inversely proportional to the
number of training patterns accessing the category. Finally, we
demonstrate the merits of our design choices by comparing
FASART, EAM and FASEAM in terms of generalization
performance and final structural complexity on a set of
classification problems.

I. INTRODUCTION

Adaptive resonance theory (ART) based neural networks
constitute a large family of neural architectures that have been
used in a plethora of applications ranging from data
clustering, classification and function approximation tasks.
They are all based on the ART paradigm first introduced in
[1] and feature a variety of highly desirable properties, like
the ability of incremental (online) learning, network response
transparency and fast training phase. A characteristic of these
networks is that they summarize the input data into clusters
via the use of prototypes called categories, whose geometrical
representation may vary (depending on the particular
architecture) from being hyper-rectangles, hyper-spheres or
hyper-ellipsoids embedded in the input space.

A member of the ART-based family is the Fuzzy
Adaptive System ART (FASART) architecture, which was
first presented in [2] as an enhancement to the standard Fuzzy
ARTMAP (FAM) network [3]. FASART networks have also
been successfully used for function approximation, data
clustering, as well as classification tasks; see for example [4]
and [5]. Both FAM and FASART employ categories, whose
geometric representations are hyper-rectangles. However,
FASART extends FAM by equipping categories with an
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additional centroid element and by introducing a new,
parameterized category choice function (CCF). In FAM, the
CCF value is constant within a category’s representation
region (see [6] for related definitions), while in FASART it
monotonically decreases from 1 (at the centroid) to 0 beyond
the boundaries of the category’s representation region.
Furthermore, while FAM’s CCF depends on the category’s
size and the distance of the pattern from the category’s
representation region, in FASART the CCF depends on the
distance of the pattern from the centroid and, implicitly, on
the size of the category in a component-wise fashion. In this
manner, FASART categories are appropriately defined as
fuzzy sets and the CCF’s value with respect to a pattern can
be interpreted as its normalized, fuzzy membership in that
fuzzy set. This permits the dual interpretation of FASART as
a neural model as well as a formal fuzzy logic inference
system, which is not the case for FAM according to [7].

Yet another ART-based architecture is Ellipsoid
ARTMAP (EAM) [8]. The network shares almost all
structural and behavioral features, as well as properties of
learning with FAM. While FAM and FASART categories are
represented as hyper-rectangles, EAM categories are of
hyper-ellipsoid shape, which may be more suitable for certain
learning problems. Like in the case of FAM, in EAM the CCF
is of constant value within a category’s representation region.
In certain classification problem domains this CCF constancy
may lead to unsatisfactory classification performance. More
specifically, it is a known fact that patterns located inside the
representation regions of two or more categories will access
the category of the smallest size. This effect may potentially
lead to poor approximation of the decision boundaries and
could be avoided by using a CCF that is not constant within
the representation region.

This paper focuses on the design of a variant of EAM,
which we named FASEAM classifier. The relationship of
FASEAM to EAM is the same as the one of FASART to
FAM. We equip EAM categories with a centroid vector that
is adjusted according to patterns accessing the categories.
Furthermore, we derive a new CCF that is reminiscent (with



respect to some properties) of the one used in FASART.
Finally, we replace EAM’s match tracking mechanism with
an alternative secondary search procedure, since we
discovered via experimentation that FASART’s match
tracking does not preserve the principle of incremental,
instantaneous learning. In order to assess our design of
FASEAM we performed experiments on four artificial
databases, where we compared FASEAM to EAM in terms of
structural complexity and generalization performance.

The rest of the paper is organized as follows. In Section
IT we highlight some of the main characteristics of FASART
and EAM networks in terms of category descriptions. Section
Il talks about FASEAM’s design with accompanying
Justifications. Section IV describes the data sets that were
used in order to compare the original EAM classifier to
FASEAM, our experimental settings and the results we
obtained. Finally, Section V provides a brief summary of our
contributions and observations.

II. FASART AND EAM CATEGORIES

A FASART category j is described by the min- and max-
vectors u; and v; respectively as well as by their centroid
vector ¢;, as depicted in Figure 1. The collection of the
aforementioned vectors is called category description of j or
template elements of category j. The region RR; defined by
the min- and max-vectors is called the representation region
of category j (also shown in Figure 1) and represents all input
patterns that are considered summarized/learned by the
category. In order for a training pattern to be learned,
categories compete in terms of their category choice function
(CCF) values; the category featuring the highest CCF value is
the winner of the competition, in which case we say that the
training pattern accesses the category. Upon access (and
under certain special circumstances that are not mentioned
here) the category may learn the training pattern.

. Y .
Fig. 1. Right: Geometrical depiction of a FASART category

for a 2-dimensional input space. Left: Plot of the CCF values of a typical
FASART category, again, for a 2-dimensional input space.

In FASART the CCF value is highest at the centroid
(equal to 1) and decreases monotonically with increasing
distance from the centroid ¢; towards 0 at the boundary of the
category’s delta region A; (also depicted in Figure 1). Note
that outside A; the CCF remains 0 and that the region’s size is
controlled by a network parameter 8 (in [2] the equivalent of
Y=1/8 is used instead).
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On the other hand, EAM categories are characterized by
a center mj, a unit-length direction vector d; and a
Mahalanobis radius R;, as depicted in Figure 2. The
representation region RR; of an EAM category j is of hyper-
ellipsoidal form; the hyper-ellipsoid’s eccentricity is
determined by a network parameter [ called axes ratio. A
value of p =1 results in hyper-spherical representation
regions.

Fig. 2. Geometrical depiction of an EAM category
for a 2-dimensional input space.

While in FASART distances are measured primarily
using the L, vector norm, in EAM they are measured using a
weighted Euclidian (Mahalanobis) vector norm (see Eq. 1),
whose weight (shape) matrix C; depends on a category’s
direction vector:
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Both network families accomplish their learning task via
creation of new categories and by expanding representation
regions of already existing categories. We refer the interested
reader to references [2], [9] and [8] for more detailed
descriptions of FASART and EAM respectively.

An advantage of FASART over FAM is that the decision
boundaries created by FASART are additionally influenced
by the specific location of centroid vectors, while in FAM
they are influenced only by the relative shape and position of
representation regions. As an example, Figure 3 compares the
decision boundaries between two FAM and two FASART
categories predicting different class labels.

1 1

Unknown Class

83 Decision Boundary Class 2 03 Decision Boundary

o ; 08 Class 2

07 — e

06 06 |-

i ¢ i

05 | £05 & T S

04 Category 1 » |Catogory 1 :

___Category 2 03 __Category 2|

Class 1

Class 1

01 : 011 Unknown Class

U\J 02 04 : 06 o8 ] UU 02 04 06 08 hi
Fig. 3. Decision boundaries for two competing FAM (on the left) and two
competing FASART categories (on the right).

In FAM, when two categories compete for a pattern that is

inside both representation regions, the winning category is the



one of the smallest size, regardless of where most of the
already encoded patterns are located within the corresponding
representation regions (Figure 3, right). In such a case,
FASART categories, via their centroid, provide a more
reasonable approach in forming smoother decision
boundaries, as depicted on the right of Figure 3. As in FAM,
EAM exhibits similar characteristics in decision boundary
formation. This last fact has been our main motivation to
derive FASEAM as an EAM variant with FASART
characteristics.

III. DESIGN OF THE FASEAM CLASSIFER

Our goal is to design a variant of EAM, which we will
refer to as FASEAM that resembles the original FASART
architecture. As a first step, we augment the standard EAM
category description with a centroid vector ¢; and allow it to
be updated by training patterns that access the category.
However, instead of the standard instar learning rule for the
centroid update in FASART, we update the centroid as in
Gaussian ARTMAP [10]:

c(jk+l) = (l _ Bc(k) )c(j/\) + Bc(k)x(/ﬁ-l)
(3)
o1 M _
P PESEERY M

where c(j") is the updated centroid vector after the presentation

of the k™ training pattern accessing category j. In other words,
in FASEAM centroids are updated with a variable learning
rate, unlike FASART centroids that are updated via a constant
learning rate. The update rule in Eq. 3 forces the centroid to
be the sample average of the training patterns that have
accessed the category rather than a moving sample average
with emphasis on the last pattern accessing the category. We
chose this particular update rule to primarily enhance the

stability of FASEAM during learning, since Bc(k) <0.5

Vk>2. Let us note here that in order for the centroid to
remain within the representation region of a FASEAM
category after an update via Eq. 3, the learning rate B used
for updating the category’s center and Mahalanobis radius
must be larger than 0.5.

Secondly, we have to derive a new CCF T{j|x) that has
similar properties to the one utilized in FASART while being
compatible to the geometry of EAM categories. More
specifically, these properties are

(i) The CCF takes values in [0,1], that is,
T(jlx)e[0,1]

(ii) The CCF is maximum at the centroid vector and
equalto I, viz. T(j|x)=1 & x=c;.

(iii) The CCF value is zero for any pattern outside or

on the boundary of the category’s delta region,

ie. T(j|x)=0 Vxegint(A;)
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(iv) The CCF value monotonically decreases inside
the delta region with increasing distance of a
training pattern from the category’s centroid,

dT(j|x)

dlx=<|
any vector norm. Here, it is also implicitly
assumed that 7{j|x) is continuous.

viz <0 VxeA;, where || || denotes

Although conditions (i)-(iv) reflect the behavior of
FASART’s CCF, they are not sufficient to uniquely
determine the CCF to be used for FASEAM. Nevertheless,
we start with the assumption that the constant T (CCF value)
locus for a FASEAM category j should be a hyper-ellipsoid of
a given center z and a Mahalanobis radius r, both of which
depend on the specific value of T. In particular, we assume
that the points x of the input space, that would feature a
specific value T € [0,1], satisfy the equation

) =], =r() “

where
z(T)=Tc; +(1-T)m;
rT)=(1-T)R;
In the above equations m;, ¢;, R; and C; are the center vector,
centroid vector, Mahalanobis radius and shape matrix of
category j. It can be shown with relative ease that Eq. 5 in
conjunction with Eq. 4 satisfy properties (ii) and (iv), while
property (i) is automatically satisfied by the assumed range of
T. From these two equations we readily obtain

&)

T(j|x)=
q;(0+yq> (0 - (R} —d2.)d?,
_ l— J J J — ‘,l R;>dmx (6)
Rj -d,,
0 d 2R,

where we have defined the following quantities:

q;(0=m;-c¢;) C,;(c;-x) (7)
R;2R;+3 (8)

dpe 2[m; ‘°/||c, ©)
dol, o, 10
2l -], a

Moreover, it is straightforward to observe that the CCF in Eq.
6 also satisfies condition (iii). The derived CCF for FASEAM
depends on the relative distances between the training pattern,
the center, and centroid, as measured in the category’s metric
(expressed by its shape matrix), as well as on the category’s
Mahalanobis radius. Figure 4 shows a contour plot of the
derived CCF for a typical FASEAM category in a 2-



dimensional setting, which verifies that the CCF given in Eq.
6 indeed satisfies conditions (i) through (iv).
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Fig. 4. Contour plot of the FASEAM CCF for an arbitrary category
assuming a 2-dimensional input space.

Additionally, we had to replace the match tracking
mechanism with an alternative secondary search process,
since match tracking in FASART is mostly ineffective: during
fast learning, when a winning category learns a pattern after
match tracking has been invoked, if we were to immediately
present again the same training pattern, the pattern may
access a completely different category. In other words,
FASART with match tracking does not preserve the principle
of instantaneous, incremental learning of FAM, a fact that
was first pointed out in [11]. To that effect, when a winning
category fails the prediction test for a specific pattern, instead
of invoking match tracking, FASEAM was designed to leave
the vigilance parameter value unchanged and search for a
suitable category that passes the prediction test and, if
updated, to preserve the aforementioned principle.

IV. EXPERIMENTAL RESULTS

In order to assess the effectiveness of our design choices
regarding FASEAM, we conducted a series of experiments
using four artificially-generated, classification data sets.
Based on these sets we compared FASART, EAM and
FASEAM classifiers in terms of generalization performance
and post-training structural complexity. In the next subsection
we provide a short description for each data set.

A. Description of data sets

1) 4-Gaussian Datasets: Three datasets were generated
by sampling from a bi-variate mixture of isotropic Gaussian
distributions with equal priors consisting of 4 components;
each component corresponded to a separate class distribution.
The means of the class conditional distributions are placed
symmetrically with respect to the coordinate axes, so that by
changing their relative separation the Bayes error can be
analytically calculated. We generated 3 datasets named
G4LO, GAME and G4HI with predetermined Bayes errors
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0.05, 0.15 and 0.4 respectively. Each data set consisted of a
training set, a cross-validation set and a test set of 500, 5,000
and 5,000 patterns respectively. The training set was kept
small to facilitate speedier training phases, while the cross-
validation and test set were chosen to be large, so that the
statistical tests comparing the models’ generalization
performance would have good resolution in determining
superiority among similarly performing networks.

2) Noisy Circle in the Square: The data set (abbreviated
as NCINS) consists of 2-dimensional input data sampled from
within the unit square [0,1]%. In the noiseless version of the
related classification problem, uniformly sampled data points,
that are located within a specified radius » from [0.5 0.5]7, are
labeled as ‘1’ and the rest as ‘0’. The radius » is chosen so
that both classes have equal prior probabilities. In the noisy
version of the problem, the label of the noiseless patterns is
flipped with probability p<0.5 resulting in a classification
problem with Bayes probability of error equal to p. We chose
a value of p=0.1. The classifier’s task is to learn the decision
boundary of the 2-class problem (the circle or radius r
centered at [0.5 0.5]") despite the presence of the noisy
patterns. Training, cross-validation and test sets were
generated with cardinalities 500, 4000 and 4000 respectively.

B. Experimental Setup

For each dataset we trained a large number of FASART,
EAM and FASEAM classifiers using several thousands
combinations of training parameter values. Let us mention
here that the same combinations of parameter values for each
classifier type were used for all 4 data sets. Next, for a given
data set we identified via cross-validation the 100 best-
performing classifiers from each model family, whose
generalization performance we subsequently assessed on the
test set. With respect to training parameter values, for EAM
we used the Weber Law CCF with a constant value for the
choice parameter ¢=0.001 and a CCF value of 0 for
uncommitted, F, layer nodes. For both EAM and FASEAM
the axes ratio [ took values in [0.2:0.1:1.0]. Additionally, for
both FASART and FASEAM the & parameter took values in
[0.05:0.05:0.5]. Finally, for FASART the leamning
rate . used for updating the centroid was held at constant

value of 0.05.

Settings common to all three architectures were (i) a
baseline vigilance p in [0.0:0.05:0.95] for the training phase,
(ii) a baseline vigilance p of 0 during performance phase to
force the classification of all cross-validation and test patterns
and (iii) a learning rate B of 1 for min- and max-vector
updates (fast learning mode). Also, all three classifier types
were trained with 50 different orders of training pattern
presentations. The above training parameter values in
conjunction with the 50 different presentation orders resulted
in 9,000 EAM, 10,000 FASART and 90,000 FASEAM
trained networks for each dataset; 436,000 models were
trained in total.



C. Observations

In the following presentation and discussion of the results
PIC will stand for percent incorrect classification, that is, the
error rate of a classifier, while PCC will stand for percent
correct classification (equals 100%-PIC). Additionally, we
measure the size (structural complexity) of an architecture by
the number of categories created during training. Ideally, a
classifier should have the lowest possible PIC (equal to the
Bayes error) and have the smallest possible size (equal to the
number of classes) for a given classification problem. All
inter-model comparisons drawn are based on test set
performance.

Table I depicts the maximum, median, minimum and
standard deviation for the PCC as measured on the test set for
each classifier type and each data set considered.
Furthermore, in this table, best values for each row are
depicted in bold. On the other hand, Figures 5(a), 5(b), 5(c)
and 5(d) depict the generalization performance (PIC on test
set) versus structural complexity (size) of the 10 best models
from each network family; each plot corresponds to one of the
four data sets. In the sequel, statements about a difference in
PIC (or PCC) being statistically significant are based on a test
of hypothesis with significance level (Type 1 error
probability) of 0.01. The test’s null hypothesis amounts to the
two classifiers compared being equally good (0 difference in
PIC/PCC), while the alternative hypothesis is that the
classifier featuring the highest PCC (lowest PIC) point
estimate indeed performs better than the other one.

TABLE I
PCC Test for 100 best networks
FASART EAM FASEAM
G4LO
Max 87.4200 88.0000 88.4600
Median 85.9000 87.1000 87.8000
Min 85.7000 86.8600 87.6800
Std. 0.5219 0.2422 0.2451
G4ME
Max 67.1400 69.6200 73.7400
Median 65.3300 68.2600 72.8000
Min 64.8000 67.8400 72.6000
Std. 0.6017 0.3848 0.3612
G4HI
Max 49.2800 52.3800 56.9800
Median 48.5400 51.4100 56.2400
Min 47.9000 51.0200 55.7800
Std. 0.4232 0.2801 0.3656
NCINS
Max 81.2250 84.4250 83.4250
Median 80.4875 83.2375 82.1625
Min 80.0750 82.6250 81.9250
Std. 0.2811 0.4084 0.2863

For the G4LO and NCINS datasets (Bayes errors of 0.05
and 0.1 respectively) Table I reflects that the 100 best

networks from each family are comparable in classification
performance. On the other hand, for harder problems like
GAME the results show that FASEAM performs better by
approximately 5% and 7% than EAM and FASART
respectively. Similarly, for the G4HI data set, the homologous
differences are about 5% and 8% respectively. These last
differences in PCC turn out to be statistically significant. In
summa, it seems that FASEAM outperforms the standard
EAM classifier in hard classification domains by a noticeable
difference. This effect may be attributed to the fact that
FASEAM uses a CCF that is not constant within category
representation regions and allows for better, maybe smoother,
approximation of the decision boundaries than in the case of
EAM’s CCF.

Turning to Figures 5(a) through 5(d) we may have
expected an increased size of the FASART models in
comparison to FASEAM and EAM due to FASART’s match
tracking ineffectiveness. However, this doesn’t seem to be the
case, maybe because FASART uses a different type of
category than FASEAM and EAM (hyper-rectangular versus
hyper-ellipsoidal representation regions) and, therefore, the
model sizes of these families cannot be compared. However,
FASART’s training took up to three times more list
presentations than EAM and FASEAM models (not shown
here), which definitely can be attributed to the ineffectiveness
of its match tracking process. Yet another observation
pertaining to the 4-Gaussians problems is the high variability
in network size of the 10 best EAM classifiers, when
compared to the 10 best FASEAM and FASART classifiers, a
fact that again could be attributed to the special nature of the
CCFs the latter ones employ. For the NCINS dataset all three
types of models exhibited noticeable variation in network
size, which could be due to the problem’s uniform class
overlap.  Nevertheless, FASEAM’s performance is
statistically indistinguishable from EAM’s, while it employs
less categories.

V. SUMMARY

In this paper we presented Fuzzy Adaptive System Ellipsoid
ARTMAP (FASEAM), a novel neural architecture based on
Ellipsoid ARTMAP (EAM) that is designed around the
framework utilized in the Fuzzy Adaptive System ART
(FASART) architecture. The design was made by augmenting
EAM categories with an adjustable centroid vector and
utilizing an appropriate category choice function (CCF) that
shares the major properties of FASART’s CCF. After
performing a series of experiments using four artificially-
generated data sets, we obtained preliminary indications that
FASEAM may perform (in terms of classification)
significantly better than the standard EAM architecture,
especially when the classification problem features highly
overlapping class distributions. This fact could be attributed
to FASEAM’s CCF that is not constant within category
representation regions and allows for better, maybe smoother,
approximation of the decision boundaries involved.
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gdlo: PIC Test vs. Number of Categories for FasART, EAM, FasEAM
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Fig. 5(a). PIC on test set versus network size; 4-G dataset; 5% overlap.
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Fig. 5(b). PIC on test set versus network size; 4-G dataset; 15% overlap.
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