
Position Statement: From Collaborative Learning Patterns to 
component-based CSCL Applications 

Juan I. Asensio1, Yannis A. Dimitriadis1, Marta Heredia1, Alejandra Martínez2, Francisco J. Álvarez1, 
María T. Blasco3, César A. Osuna4 

1Department of Signal Theory, Communications and Telematics Engineering 
{juaase,yannis,mherrod,fraalv}@pireo.tel.uva.es 

2Department of Computer Science 
amartine@infor.uva.es 

3Faculty of Education 
tbq@dlyl.uva.es 

 
University of Valladolid 

Camino del Cementerio s/n 
47011 Valladolid. Spain 

 
4Mexican Petroleum Institute. Mexico 

cosuna@imp.mx 

Abstract. The creation of a framework of software components and their associated software design 
patterns would provide great benefits for the development of reusable, flexible, and customizable com-
ponent-based CSCL applications. The development of such a framework implies that software develop-
ers have a proper understanding of the key concepts and principles of the domain of interest. The 
achievement of this understanding is particularly difficult in the CSCL domain where there is a big sepa-
ration among abstractions used by Cognitive Educational Sciences experts and those used by software 
developers. In order to alleviate this problem, this position statement proposes, justifies, and illustrates 
the use of the so-called Collaborative Learning Patterns: detailed descriptions of well-accepted types of 
collaborative learning activities defined by Collaborative Learning experts. We also present the initial 
steps that would be followed so that software developers identify software components applicable to 
several types of component-based CSCL applications.  All this proposal is illustrated with the jigsaw 
and pyramid Collaborative Learning Patterns and their use in the development of a real CSCL applica-
tion according to the Unified Process software development methodology. 

1 Introduction and Motivation  

Our multidisciplinary research group at University of Valladolid, Spain, is formed by people coming 
from the Faculty of Education and the Schools of Informatics and Telecommunications Engineering. Our 
main research interest is focused on the field of Computer-Supported Collaborative Learning (CSCL). 

Some of our currently open research lines, within CSCL, include the computational support of evalua-
tion tasks in collaborative learning scenarios, the suitability of grid computing infrastructures for CSCL 
applications and,  more closely related to the topic of this statement, the application of Component-
Based Software Engineering (CBSE) principles to the development of flexible, customizable and reus-
able CSCL software.  

With respect to the combination of CBSE and CSCL, one of the most important problems we are fac-
ing is the identification and dimensioning (i.e. level of granularity) of components. The fulfillment of 
this task largely depends on how the key concepts and principles of the domain of interest are under-
stood by software developers [2]. In the CSCL domain, this problem is particularly important due to the 
big separation among abstractions used by experts in Collaborative Learning (pedagogues, psycholo-
gists, education practitioners,…) and those used by software developers.  

In this sense, traditional efforts for establishing a common ground among experts in the Collaborative 
Learning domain and software developers include both top-down and bottom-up approaches. Some of 
the most representative approaches in the top-down category are CSCL conceptual frameworks and on-
tologies. 

DELFOS (a Description of a tele-Educational Layered Framework Oriented to Learning Situations) is a 
CSCL conceptual framework developed by the authors [10]. DELFOS was defined in order to support the 
complex and interdisciplinary development of applications in the CSCL domain. It proposed a learning 
model, some ideas about a generic architecture for CSCL applications, and a development method based 
on  ideas from the participative analysis and design. Nevertheless, DELFOS was mainly focused on the 



learning model. The complexity and broad scope of the learning model made the software development 
methodological proposals very little usable. Furthermore, in terms of software reusability, flexibility and 
customization it provided limited help. 

Collaborative Learning Ontologies [3] try to offer a formal shared conceptualization of the domain 
based on concrete theories. Current proposals only include incomplete views of the domain and they do 
not provide ways of applying the ontological definitions to the support of development efforts of CSCL 
applications in a practical way. 

On the other hand, bottom-up approaches are based on the development of concrete CSCL applica-
tions that aim to extract significant software components. However, the authors experience [6] with this 
approach shows that identification of reusable components is extremely difficult as the developed appli-
cations are very influenced and biased towards a concrete learning problem. Also, it easily becomes evi-
dent that a general and reusable formalization is necessary at the domain level. Both facts confirm the 
problems encountered in the field of Component-Based Software Engineering [4]. 

Therefore, a new approach, also shown in Figure 1, has been explored based on the use of Collabora-
tive Learning Patterns that will be described in section 2. Two concrete examples of Collaborative Learn-
ing Patterns will also be presented in that section. Section 3 contains our position statement about the 
usefulness and possible limitations of the Collaborative Learning Pattern approach for the development 
of CSCL applications. Finally, section 4 concludes this document and describes some future research 
items. 

 
 

COLLABORATIVE 
LEARNING 
DOMAIN 

(COMPONENT-
BASED SOFTWARE 

DEVELOPMENT 
DOMAIN 

Collaborative 
Learning Concepts, 

Principles, 
Theories... 

CSCL 
Applications  

Bottom -Up Approach 
(use of concrete 

applications) 

Top-Down Approach  
(DELFOS, 

Ongologies, …) 

CL Best Practices  

Types of CSCL 
Applications 

Influence  

Restrict 

Collaborative 
Learning Patterns 

(CLPs) 

Reusable Software 
Components 

Software Patterns  

CSCL Component Framework 

TRADITIONAL APPROACH PROPOSED APPROACH  
+abst raction level 

+closer to 
implementation level 

? 

 
Fig. 1. Collaborative Learning Patterns as an alternative for establishing a common ground between the 

Collaborative Learning domain and the software development field 

2 Collaborative Learning Patterns: Definition and Examples 

Our proposition of the term “Collaborative Learning Pattern” is derived from the notion of “Collabora-
tion Design Pattern” introduced in [5] and defined as a way of describing “[…] best practices in collabo-
rative learning” used as “[…] a shorthand to effectively communicate collaborative activities, and pro-
vide building blocks for more complex situations” in the CSCL field. The authors of [5] conclude that 
their patterns offer “[…] real world examples that can guide technical discussions (some times giving 
birth to a software structure of the same name)” but they don’t provide clues about how this process 
could be possible. 

Our idea of “Collaborative Learning Patterns” (CLPs) goes a step further in this sense. They can be 
understood as a way of describing types of collaborative learning activities easily understandable by 
software developers.  CLPs are identified and formalized by Collaborative Learning practitioners (mainly 
teachers) as well as validated by pedagogy experts. They are intended to be used by software developers 
in order to derive common requirements for CSCL applications supporting collaborative learning activi-
ties of the same type (i.e. activities compliant with the same CLP). In spite of this final use of the CLPs, it 
is important to point out that the contents of the CLPs themselves do not include any technical informa-
tion: the types of collaboration activities they describe could be realized without the support of CSCL 
applications. 

We represent CLPs are according to a formalism, shown in Table 1, that enlarges the one previously 
described for “Collaboration Design Patterns” [5]. That table also shows two examples of CLPs, drawn 
form a larger set that resulted from our analysis, defining well-known practices in Collaborative Learn-
ing: jigsaw and pyramid [9].  



Table 1. Collaborative Learning Pattern structure and its application to Jigsaw and Pyramid-like activities 

Facet  Explanation Example #1 Example #2 

Name Name of the CLP Jigsaw Pyramid  

Problem Learning problem to 
be solved by the CLP 

Complex problem whose resolution implies the 
handling and/or collection of information that 
can be easily divided into disjoint sets and that 
can be used for the resolution of independent 
subproblems 

Complex problem, usually without a concrete solu-
tion, whose resolution implies the achievement of 
gradual consensus among all the participants 

Example A real-world learning 
activity suitable of 
being structured 
according to the CLP 

Collaborative design of a computing system 
where the study of each subsystem is assigned to 
a particular participant 

Collaborative proposal of the design of a computing 
system where each participant contributes wi th a 
complete design that is subsequently compared with 
other contributions and consequently refined 

Context Environment type in 
which the CLP could 
be applied 

Several small groups facing the study of a lot of 
information for the resolution of the same 
problem 

Several participants facing the collaborative resolu-
tion of the same problem 

Solution Description of the 
proposal by the CLP 
for solving the 
problem 

Each participant in a group (jigsaw group) 
studies a particular subproblem. The participants 
of different groups that study the same problem 
meet in an “Expert Group” for exchanging ideas. 
At last, jigsaw group participants  meet to solve 
the whole problem. Each participant contributes 
with its “expertise” 

Each individual participant studies the problem and 
proposes a solution. Groups (usually pairs) of partici-
pants compare and discuss their proposals and, 
finally, propose a new shared solution. Those groups 
join in larger groups in order to generate new agreed 
proposal. At the end, all the participants must propose 
a final and agreed solution  

Actors Actors involved in the 
Collaborative Learn-
ing activity described 
by the CLP 

• Teacher 
• Pupil 
• Evaluator  

• Teacher 
• Pupil 
• Evaluator 

Types of 
Tasks 

Types of tasks, 
together with their 
sequence, performed 
by the actors in-
volved in the activ-
ity.  

Pupil: 
1. Access to the information related with the 

subproblem 
2. Individual study of the subproblem 
3. Subproblem discussion in the experts group 
4. Problem resolution in the jigsaw group 
5. Result proposition 
6. Process self-evaluation 
Teacher: 
1. Global problem definition 
2. Division of the problem in subproblems 
3. Creation of jigsaw groups 
4. Assignment of subproblems 
5. Provision of useful information 
6. Floor control system establishment 
7. Decisions about control of time 
8. Activity progress monitoring 
9. Result evaluation 

Pupil: 
1. Access to the information related with the problem 
2. Individual study of the problem 
3. Individual solution proposal 
[REPEAT 
4. Formation of groups 
5. Group discussion 
6. Common solution proposal 
] (until only one group remains) 
7. Process self-evaluation 
Teacher: 
 
1. Global problem definition 
2. Provision of useful information 
3. Group dimensioning 
4. Decisions about control of time 
5. Activity progress monitoring 
6. Result evaluation 
 

Types 
and struc-
ture of 
Informa-
tion 

Description of the 
types of information 
identified in the 
collaborative activity 
and how they are 
related 

• Input information needed for global problem 
resolution 

• Partial information assigned to subproblems 
• Subproblem resolution proposal 
• Global problem resolution proposal 
• Correct global problem resolution (optional) 

• Input information needed for global problem 
resolution 

• Intermediate resolution proposals 
• Global problem resolution proposal 
• Correct global problem resolution (optional) 

Types 
and struc-
ture of 
Groups 

Description of the 
types of groups of 
pupils identified  in 
the collaborative 
activity and how they 
are related 

• Jigsaw groups 
• Experts groups in charge of subproblems 

• Growing pyramid groups 

3 Position Statement: From Collaborative Learning Patterns to component-based 
CSCL applications 

The nature of the information provided by the definition of CLPs, as shown in the previous section, is 
suitable for being used by software developers. The information a CLP provides could be used as a 
source for the derivation of common functional requirements for all CSCL applications devoted to the 
support of collaborative learning activities of the type defined by the CLP. Obviously, the use of CLPs 
would depend on the concrete software development methodology that is employed. As a way of illus-
trating these ideas, if a software development methodology based on the Unified Process (UP) [1] is cho-
sen, the information provided by CLPs might be used as the basis for the derivation of actors and use 
cases, the conceptual model (also known as domain model), and the analysis of the use cases during the 
iterations of the so-called “Inception Phase”. UP has been chosen for the illustration of the usage of CLPs 
because it is a very common methodology for the development of component-based software applica-
tions. Nevertheless it is important to point out that UP is not the only choice for CLPs. 

Figure 2 shows UML (Unified Modeling Language) use case diagrams and class diagram representing 
use cases and conceptual modeling for a software application that could eventually support a collabora-
tive learning activity of the type described by the jigsaw CLP defined in Table 1. As it can be appreci-



ated, the use case diagram focuses its scope in the reflection of functionality needed for supporting the 
tasks performed by the different actors involved in the CLP. Although it is not shown here, these use 
cases have an associated detailed description that must be agreed with the CLP writers in order to check 
that there is a common understanding of the details and implications of the functional requirements. On 
the other hand, the conceptual or domain model reflects the types and the structure of the information 
and groups described by the CLP, as well as the interrelation among them. It can be appreciated, for in-
stance, how Jigsaw Group, and Expert Group classes are associated to Global Problem and Subproblem 
classes which, at the same time, maintain an aggregation association between them. 

 

Problem and Subproblem Definition  
and Assignment 

Group Management 

Time Control 

Floor Control System 
establishment 

Information Provision 
Activity Progress Monitoring 

Teacher 

Result Evaluation 

Application Access 

Individual Work Support 

Information Access 

Experts Group Work Support 

Jigsaw Group Work Support 

Result Proposition 

Pupil 

Process self-evaluation Support  

 

 

Global Problem 

Global Information 

Jigsaw Group 
resolves 

consults 
Solution 

correct 
0..1 0..1 correct 

proposed proposed 

Partial Information 
0..* 

Experts Group 
consults 

Teacher 

poses 
provides 0..* 

creates and  
supervise 

0..* 

evaluates 
supervises 

User 

Subproblem 
0..* 

defines  
and  

assigns 
resolves 

Pupil 
0..* 

is assigned 
Group 

0..* 

Evaluator 
0..* 

0..* 

monitors  
interactions 

0..* 

0..* 

0..* 

0..* 
0..* 

0..* 

0..* 

0..* 

 

Fig. 2. UML use case diagram and conceptual class diagram derived from the jigsaw CLP 

After completing the UP inception phase using the information provided by CLPs, and using normal 
software development techniques prescribed, in this example, by UP, it is possible to obtain a software 
design architecture for a jigsaw-like CSCL application 

Of course, it is difficult to prescribe a way of starting with a CLP definition and reaching a concrete 
software design for the corresponding type of applications. In other words, the final design of the CSCL 
application largely depends on the abilities of the involved software developers. Nevertheless, our ex-
perience developing CSCL applications indicates that CLPs are a very useful tool during the first stages 
of the development. Furthermore, software designs that we have obtained have successfully been reused 
in more than one application and that indicates that, by starting with Collaborative Learning Patterns, it 
could eventually be possible to obtain valid Architectural Software Patterns [7]. Nevertheless, it is pre-
mature to state that CLPs always result in valid Software Patterns: this is still an open research issue. 

In terms of software reusability, the implications from the presented approach are very important: the 
use of CLPs helps software developers to understand the requirements and involved concepts of concrete 
types of CSCL applications. Therefore, it is much easier to identify common software components for 
those types of application. These common components are potentially more reusable that those obtained 
when developing a particular CSCL application not bound to a CLP. This fact facilitates the progressive 
fulfillment of the original goal of obtaining a component framework for the CSCL domain. 

In terms of  usability and significance from the point of view of Cognitive and Learning sciences ex-
perts, the CSCL applications developed by starting from CLPs strongly reflect solid Collaborative Learn-
ing principles while they also reflect best practices widely understood by education practitioners. Al-
though CLPs have a very limited scope when compared with the great amount of concepts and theories 
that belong to the Collaborative Learning field, CLPs and the proposed use by software engineers pro-
vide a realistic path to the use of a subset of certain importance. 

The approach described in this document is based on the experience of our group in CSCL appica-
tions during the last decade. It has been applied, for example, to the development of a concrete compo-
nent-based CSCL application devoted to the support of a course on computer design for Telecommuni-
cations Engineers in our University. That application, called eLAO, supports several collaborative learn-
ing activities that belong to both the jigsaw and the pyramid CLPs. In this case, we have been able to use 
the proposed approach to a fusion of two different CLPs, showing that reusability is not necessarilly 
reduced to applications belonging to the same CLP. Reusability of the software components developed 
for eLAO is currently being evaluated in the construction of other CSCL applications based on the same 
CLPs. Preliminary conclusions indicate that components that support the teacher’s tasks and those com-
ponents related to information handling are the most reusable in applications based on the same CLP.  



4 Conclusions and Future Work 

This document has introduced and illustrated the concept of Collaborative Learning Pattern (CLP) as a 
promising approach for establishing a common ground among experts and practitioners from Cognitive 
and Learning sciences and software developers of CSCL applications. In our opinion, CLPs can be used 
by software developers during the first stages of software development methodologies in order to under-
stand common functional requirements of different types of CSCL applications. In subsequent stages, 
they can also be used for the identification of common software components for CSCL applications that 
support collaborative learning activities compliant with a particular or a combination of existing CLP. 
These identified components will eventually belong to a general CSCL component framework for facili-
tating reusability, flexibility and customization of CSCL software. This document has also presented two 
examples of CLP definition and an example of how those particular CLPs were used by software devel-
opers in order to identify software components applicable to a particular component-based CSCL appli-
cation. Another CLP (simulation) has also been defined (although not presented here due to space restric-
tions) and the combination of two CLPs has been successfully employed during the development of a 
specific CSCL application. 

This open research effort still has to face several challenges. Currently, the software component reus-
ability improvement obtained by the CLP approach is being evaluated. Also, the CLP definition formal-
ism is being discussed with learning experts in order to include more information useful for software 
developers. At the same time, new CLPs are being defined in order to find potential limitations of the 
approach. A very interesting research issue under study is the identification of ways of achieving an 
automatic or semiautomatic translation of CLPs into software development artifacts. In other words, we 
are currently trying to propose the conditions and the steps of a methodology that would allow to derive 
Software Design Patterns from Collaborative Learning Patterns.  

Another possible improvement of the CLP approach deals with the introduction of specific informa-
tion about the types of interactions to register and analyze in order to support coaching and evaluation 
aspects, of major importance in the CSCL field [8].  

Acknowledgements  
The authors want to acknowledge the contributions from other members of the EMIC Group (Education, 
Media, Information, and Culture), specially J.L. Barrio, B. Rubia, D. Hernández, P. Orozco, and R. An-
guita. This work was partially financed by the Autonomous Government of Castilla and León, Spain 
(project VA117/01), and the Ministry of Science and Technology, Spain (projects TIC2000-1054 and 
TIC-2002-04258-C3-02). 
 
References 

 
 1. Arlow, J. and Neustadt, I.:  UML and the Unified Process: Practical Object-Oriented Analysis and Design.  Ad-

dison Wesley Proffesional (2001) 
 2. Askit, M., Marcelloni, F., and Tekinerdogan, B.:  Developing Object-Oriented Frameworks Using Domain Mod-

els. ACM Computing Surveys  32 (2000) 
 3. Barros, B., Verdejo, M. F., Read, T., and Mizoguchi, R.: Applications of a Collaborative Learning Ontology. 

Proceedings of the Mexican International Conference on Artificial Intelligence (MICAI'02). (2002) 
 4. Carey, J. and Carlson, B.:  Lessons learned becoming a framework developer. Software Practice and Experience  

43 (2002) 789-800 
 5. DiGiano, C., Yarnall, L., Patton, C., Roschelle, J., Tatar, D., and Manley, M.: Collaboration Design Patterns: 

Conceptual Tools for Planning for the Wireless Classroom. Proceedings of the IEEE International Workshop on 
Wireless and Mobile Technologies in Education (WMTE'02). (2002 ) 

 6. Dimitriadis, Y. A., Asensio, J. I., Toquero, J., Estébanez, L., Martín, T. A., and Martínes, A.: Towards a Soft-
ware Components System for the Computer-Supported Collaborative Learning Domain (in spanish). Proceedings 
of the Spanish Informatics and Telecommunications Conference (SIT'02). Seville, Spain  (2002) 

 7. Gamma, E., Helm, R., Johnson, R., and Vlissides, J.:  Design Patterns: Elements of Reusable Object-Oriented 
Software.  Addison-Wesley (1995) 

 8. Jermann, P., Soller, A., and Muehlenbrock, M.: From Mirroring to Guiding: A Review of State of the Art Tech-
nology for Supporting Collaborative Learning. Proceedings of ECSCL 2001. (2001) 

 9. Johnson, D. W.  and Johnson, R. T.:  Learning together and alone: cooperative, competitive and individualistic 
learning.  Allyn and Bacon, Needham Heights, MA (1999) 

 10. Osuna, C. and Dimitriadis, Y.: A Framework for the Development of Educational Collaborative Applications 
based on Social Constructivism. Proceedings of the CYTED RITOS International Workshop on Groupware. 
(1999) 


