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Abstract

This paper addresses the automatization of a penicillin production process with the development of soft sensors as well as Internal

Model Controllers (IMC) for a penicillin fermentation plant using modules based on FasArt and FasBack neuro-fuzzy systems.

While soft sensors are intended to aid the human supervision of the process currently being conducted at pilot plants, the proposed

controller will make the automatization feasible and eliminate the need for human operator. FasArt and FasBack feature fast stable

learning and good MIMO identification, which makes them suitable for the development of adaptive controllers and soft sensors. In

this paper, these modules are evaluated by training the neuro-fuzzy systems first on simulated data and then applying the resulting

IMC controllers to a simulated plant. Moreover, training the systems on data coming from a real pilot plant, and evaluating the

controller performance on the same real plant. Results show that the trend of reference is captured, thus allowing high penicillin

production. Moreover, soft sensors derived for biomass, viscosity and penicillin are very accurate.

In addition, on-line adaptive capabilities were implemented and tested with FasBack, since this system presents learning guided by

error minimization as new data samples arrive. With these features, adaptive IMC controllers can be implemented and are helpful

when dynamics have been poorly learned or the plant parameters vary with time, since the performance of static models and

controllers can be improved through adaptation.

r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Biochemical products, especially penicillin, have an
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research in several fields related to their production.
For example, enhancements in penicillin producing
cultures improved the productivity from milligrams
per liter in the original strain of Fleming Penicillium

notatum to more than 30 g=l of G penicillin. More than
400 fungi strains with the capability to produce
penicillin have been classified and multiplied by
generating random mutants (Paul, Kent, & Thomas,
1993) and using genetic engineering (Agrawal, Deepika,
& Joseph, 1999). However, although new strains have
higher productivities, fermentations carried out with
seeds of these strains must take place under very
controlled conditions, hence justifying research in other
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fields. In particular, this paper will address the develop-
ment of software sensors to aid the human supervision
of the process, as well as the development of automatic
controllers that may eventually alleviate the need for
human supervision of the process.
Software sensors are important in the penicillin

production process for several reasons. The supervision
of the fermentation process must maintain certain
variables within strict limits since biological systems
are highly sensitive to abnormal changes in operation
conditions. Supervision is also essential because of the
restrictions imposed by regulatory authorities to allow
the commercialization of the biochemical products.
These authorities, such as FDA in the USA, demand
proof that operations have adhered to procedures that
guarantee chemical consistency (Lennox, Montague,
Hiden, Kornfeld, & Goulding, 2001). To carry out this
supervision, important variables must be monitored. In
addition, if automatic controllers are to be derived, they
may benefit from the estimation of important variables,
not measured on-line.
Although hardware sensor technology has improved

considerably, many variables are still monitored
through laboratory analyses. These are expensive and
involve considerable delays. While useful for a posteriori
analysis of the process, they are inadequate for on-line
supervision. Developments in the area of advanced
bioprocess control have demonstrated the applicability
of inferential estimation of bioprocess state variables
from secondary variables that can be easily monitored
on-line, yielding the so-called software sensors. Several
approaches have been applied, such as stochastic and
statistical methods (Cunha, Glassey, Montague, Ala-
bert, & Mohan, 2002; McAvoy, Su, Wang, & He, 1992)
neural networks (Linko, Zhu, & Linko, 1999; Warnes,
Glassey, Montague, & Kara, 1998), fuzzy logic (Havlik
& Lubbert, 1992) and neuro-fuzzy systems (Ara !uzo-
Bravo, G !omez-Sanch!ez, Dimitriadis, Cano-Izquierdo, &
L !opez-Coronado, 1999b; Cano-Izquierdo, Dimitriadis,
Ara !uzo-Bravo, Abajo-Manzano, & L !opez-Coronado,
1996).
In addition to monitoring, this paper also addresses

the development of an automatic controller for the
penicillin production process at Antibi !oticos, S.A.U.
pilot plant (sited at Le !on, Spain). This process is
currently supervised by human experts aided by a
distributed control system that displays all available
measurements and executes control commands. The
automatization of the control would facilitate the
repeatability of the process, thus reducing the number
of anomalous batches, and could also reduce production
costs. However, this is a difficult task due to the non-
linear dynamics and time varying parameters featured
by the penicillin production process. For these reasons,
pure mathematical techniques that calculate optimal
feeding trajectories by means of a mathematical process
model (Jonhson, 1987) were not feasible until recently
since it is not easy to model and optimize non-linear
systems with slow response unless accurate models and
reliable on-line sensors for the state variables are
available. A traditional approach in the systems control
field is to search for an equivalent linear system. In other
words to adjust control parameters according to a
linearization of the system transfer function near its
equilibrium state, so that the equilibrium state becomes
an attractor of the state space of the system (Isidori,
1995). This solution simplifies the problem, but the loss
of information may be critical in the penicillin produc-
tion process.
The great complexity and uncertainty of biological

processes require a sophisticated operational logic which
cannot easily fit into the mathematical framework of the
traditional control approach (Shioya, Shimizu, &
Yoshida, 1999). The development of more intelligent
methods for practical industrial application is needed.
One such valuable set of alternatives is knowledge-based
(KB) methodologies that are well suited to model and
control biological processes because they allow for the
possibility of working with the fragmentary, uncertain,
qualitative and blended knowledge typical of such
processes. In particular, neural networks (Massimo,
Montague, Willis, Tham, & Morris, 1992; Montague,
Morris, Wright, Aynsley, & Ward, 1986) fuzzy logic
methods (Horiuchi & Kishimoto, 2002) and neuro-fuzzy
systems (Ara !uzo-Bravo, et al., 1999a) have been applied
to the penicillin process. Once a KB model of the plant
has been derived, it is possible to use model based
controllers. Among them, Model Based Predictive
Controllers (MBPC) (Richalet, 1993; Camacho &
Bordons, 1994) have already been applied to bioprocess
problems (Azimzadeh, Gal!an, & Romagnoli, 2001; Zuo
& Wu, 2000), but they require non-linear optimization
techniques. Internal Model Control (IMC) structure, on
the other hand, permits a rational control design
procedure without strong mathematical requirements,
allowing for the consideration of control quality and
robustness in design decisions (Economou, Morari, &
Piasson, 1986). It has also been proved that it can be
easily extended to the control of non-linear plants.
In this paper, we are going to use neural networks and

fuzzy logic to build KB controllers. Neural networks are
well suited for non-linear plant identification without a
priori knowledge, and provide a solution to build model
and control modules by learning direct and inverse
dynamics (Narendra & Parthasarathyu, 1990). This is
why they have been widely applied to bioprocess control
problems (Boskovic & Narendra, 1995; Montague et al.,
1986). Among neural networks, Multilayer Perceptrons
(MLPs) (Rosenblatt, 1958) are very popular, but they
have several drawbacks, notably that they cannot be
used to offer adaptive solutions (Grossberg, 1982). In
addition, the knowledge contained in their weights
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cannot be expressed in understandable terms (Carpenter
& Tan, 1995), while the use of fuzzy logic (Zadeh, 1965)
within neural networks allows for the expression of
acquired knowledge with rules that resemble those
handled by humans.
This paper applies of FasArt and FasBack neuro-

fuzzy systems (Cano-Izquierdo, Dimitriadis, G !omez-
S!anchez, & L !opez-Coronado, 2001) to build software
sensors to estimate important variables in the penicillin
production process, such as biomass concentration or
viscosity of the broth, and to develop the modules for
IMC and adaptive IMC (AIMC) controllers. Both the
soft sensors and the controllers are initially validated on
a simulated model. Results achieved at a real pilot plant
at Antibi !oticos, S.A.U. will be explained later in the
paper. In this sense, the soft sensors are intended to aid
the human supervision of the process actually being
carried out at this pilot plant, as well as in the
production plant. On the contrary, the development of
the controller aims at showing the feasibility of the
automatization of the control process, that is currently
human-operated.
The remainder of the article is organized as follows:

Section 2 briefly describes the penicillin production
process; Section 3 presents FasArt and FasBack most
relevant features; Section 4 describes how soft sensors
are derived using these neuro-fuzzy systems; Section 5
describes the IMC strategy pointing out the ways to
obtain model and control modules with FasArt and
FasBack; Section 6 starts showing experimental results
for soft sensors and a controller derived for a simulated
plant, under realistic scenarios, and then moves onto
results achieved during the usage of these soft sensors
and an IMC applied to biomass control at the real pilot
plant; Section 7 briefly illustrates the rules extraction
feature from the neuro-fuzzy systems used here; finally,
Section 8 presents the main conclusions.
2. The penicillin production process and its control

2.1. Process description

The classical penicillin production process is an
aerobic fermentation in fed batch fermentors made with
some Penicillium strains, usually Penicillium chrysogen-

um (Nielsen, 1997) that transforms substrates rich in
carbohydrates into penicillin. As with other antibiotic
production processes (Cunha et al., 2002), the penicillin
process operated at Antibi !oticos involves four stages.
The incubation of the culture strains provides the seed
that grows in seed fermentors until a stage of maturity is
reached. Then, the seed is transferred to a final-stage
fermentor. These fermentors are operated in fed-batch
mode under standard conditions in order to optimize the
synthesis of penicillin. After that, the product is with-
drawn by solvent extraction in the downstream.
This paper addresses the control and monitoring of

the main fermentation stage. This process is carried out
in stirred aerated reactors with air sterilized by filtration.
At the beginning, initial substrates (carbon, phosphorus
and nitrogen sources) and penicillin-G reaction pre-
cursor (phenyl acetic acid) are introduced in the reactor
to start the fermentation. The process follows with an
exponential growth phase (tropophase), in which the
substrate concentration in the fermentor is high. Since
penicillin production is a substrate repression process
(Revilla, L !opez-Nieto, Luengo, & Mart!ın, 1984) there is
almost no production in this phase. When the micro-
organism has grown enough to reduce the substrate
concentration, the penicillin production phase (idio-
phase) starts. During the entire process, the experts
analyze the evolution of variables that are measured
either on-line (dissolved oxygen (DO), carbon dioxide
production rate (CPR)) or off-line (viscosity, biomass
concentration, phosphorus concentration, penicillin
concentration), and decide targets for controlled vari-
ables (dissolved oxygen, nitrogen concentration, carbon
concentration, phenyl acetic concentration, pH), and
therefore manipulate the main control variables (carbon
source, nitrogen source, phenyl acetic source). To
optimize the penicillin production, they must face the
negative effect of non-measurable information (uncer-
tainty in the substrate composition, non-homogeneity in
the broth), structure altering phenomena (diauxic
growth, changes of metabolic pathways, expression or
repression of genes caused by chemical factors or
temperature, cell pellets forming), and other unpredict-
able events such as broth contamination. The most
important variables are characterized in Table 1,
showing that the three most informative ones (the
biochemical state—biomass and penicillin concentra-
tion—and the viscosity) cannot be measured on-line,
and thus the control of the process has to rely on the
information yielded by some physico-chemical variables,
such as CPR and DO; that can be measured on-line. The
table also shows that there are constrained variables,
some within very strict limits, such as dissolved oxygen.

2.2. Existing monitoring and control implementations

The efficient supervision of the fermentation is
hindered by problems in the on-line identification of
the process state and by inconsistencies imposed on the
system by the complex and poorly understood nature of
the media, cultures and raw material, causing inherent
process variability. Moreover, the aerobic fermentation
associated with penicillin production suffers from
problem of limited oxygen transfer capability, that
constrains the process control. Thus, the fermentation
evolution depends on human operator decisions to
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Table 1

Features of the main fermentation variables with respect to: measurement timing (} on-line, � off-line); time evolution (s incremental, r
decremental- constant,* oscillant); constraints ( %4 high values,

%
3 low values,) in a range); and position in the control hierarchy (k low level, m

high level)

Symbol Name Measurement Evolution Restriction Control

Variables associated to the substrate

S Carbon source � * m
N Nitrogen � * 3 m
PS Phosphorous � r 3 m
AFA Phenil acetic acid � * ) m

Physico-chemical variables

RPM Agitation speed } s %4 k
PRE Pressure } - ) k
T Temperature } - ) k
pH Acidity } - ) k
DO Dissolved oxygen } r

%
3 m

CPR CO2 production rate } s
VIS Viscosity � s %4 m

Biochemical variables

X Biomass � s m
P Penicillin � s m
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adjust the culture growth, minimizing the effects of such
limitations. Apart from the mechanical limitations of
the fermentor, the operator needs information about the
biomass concentration and other physiological para-
meters of the culture. Several mathematical models
(Birol, Undey, Parulekar, & Cinar, 2002; Tiller, Meyerh-
off, Sziele, Sch .ugerl, & Bellgardt, 1994; Nielsen &
Villadsen, 1992; Nestaas & Wang, 1983; Bajpai & ReuX,
1981; Heijnen, Roels, & Stouthamer, 1979) were
developed to handle such information in a systematic
way. However, neither of them is adequate to solve the
real problems of the penicillin industrial processes
carried out at Antibi !oticos, since the industrial condi-
tions there are much stricter than those considered for
the modeling. For all these reasons the process is
controlled using the empirical knowledge of the experts
as the single strategy. Traditionally, experts choose the
cellular growth as the main control variable because is
the only one that can be characterized consistently in
terms of its effects on production (Mou, 1975). With this
approach, the highest production is achieved when the
carbon source is controlled after the tropophase in order
to maintain a low accumulation of biomass (Montague
et al., 1986). Generally, they use a verbal biomass
reference, that is tracked through manipulating control
variables using empirical knowledge.

2.3. New monitoring and control implementations

It is possible, from a qualitative description offered by
experts, (as shown in Table 1), to use empirical
knowledge in order to implement an expert system or
to tune manually a fuzzy system. Nevertheless, in both
cases numerical adjustment of rule parameters is
required. Moreover, the success of the resulting systems
depends on both rule adjustment to be well done, and
the qualitative description to be accurate. On the
contrary, the use of neuro-fuzzy systems allows rule
parameters to be automatically tuned by a learning
process that acquires knowledge from fermentation
data. However, to integrate adequately this new control
scheme in Antibi !oticos pilot plant, the data used to
derive the models must be generated, while the variables
to be controlled must be determined, as well as their
reference values. Finally, it must be decided how this
new controller interacts with the rest of the control and
monitoring systems already existing in the plant.
Input–output data sets are generated with a simulated

plant, if the plant to be controlled is also simulated, or
collecting data from the real plant otherwise. With these
data sets, neural networks are trained to build soft
sensors and controllers, as described in Section 4. Once
these networks are trained, the knowledge they acquire
is stored as a set of fuzzy rules that describe the process
modeled. If these rules are expressed in some linguistic
form, as shown later in Section 7, they are likely to be
similar to the linguistic description of the process offered
by the experts.
In addition, in order to automate the control of the

plant, a biomass reference trajectory has to be pro-
posed. Note that, since penicillin is a secondary
metabolite of the process, controlling it directly is very
difficult. This fact has been assumed in many other
approaches (Montague et al., 1986; Montague, Morris,
& Bush, 1988; Massimo et al., 1992; Willis, Montague,
Morris, & Tham, 1991). These conclude that biomass
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concentration has to be controlled to optimize penicillin
production. The biomass reference trajectory used in
our research was suggested by Antibi !oticos experts, and
it can be mathematically expressed (as inspired by Mou
(1975)) as follows:

X ref ¼
emtr t; tpt1;

emtr t þ DXid
1�e�mid ðt�t1 Þ

1þe�mid ðt�t1 Þ
; t > t1;

(
ð1Þ

where DXid is the total growth expected in the idiophase,
and t1 is the moment of change from the tropophase to
the idiophase. Tracking this reference guarantees high
growth rate mtr during the tropophase stage and low
growth rate mid during the idiophase. This law was used
to test controller performance on a simulated plant.
Subsequently, to operate with a more realistic reference
in the Antibi !oticos plant, another reference was model
inspired by statistical process control (SPC) ideas
(Lennox et al., 2001), it was designed a reference that
averages the biomass profile of several successful
fermentations controlled by experts.
Finally, to implement the new control scheme, the

different control tasks (choice of dynamic references and
set points, tracking of dynamic references, and regula-
tion of set points) were decoupled through a hierarchical
control system, as depicted in Fig. 1. The automation
system, which is a distributed control system (DCS)
based on OPTO 22, provides an interface to the basic
field instrumentation and the gas flow analyzers, and
also handles alarms, safety interlocks and logic se-
quences, as well as basic-level control loops. A FIX
DMACS information system is used to collect all
measurements from the automation system. It also
provides access to results of laboratory analyses,
performs the calculations of average values and stores
both the current and historical data into the real time
database. The Adaptive Internal Model Controller
OPERATORS & DOMAIN EXPERTS

AIMC

CONSTRAINTS HANDLING

STABILIZING CONTROLLERS

INFORMATION SYSTEM

LABORATORY AUTOMATION SYSTEM

MANUAL SAMPLES INSTRUMENTATION

PENICILLIN PRODUCTION PROCESS

Fig. 1. Overall scheme of the hierarchical control structure for the

penicillin production process. Bold arrows are control fluxes while

hollow are information fluxes.
(AIMC) proposed here was implemented with Matlab
in a Windows NT workstation placed at the top level of
the hierarchy. Thus, AIMC decides the objectives of the
low level controllers, which are stabilizing controllers

based typically on PID strategies. These objectives were
previously filtered by the constraints handling module
that is activated for protecting personnel and equipment
and for tackling large deviations from the target
conditions.
3. FasArt and FasBack neuro-fuzzy architectures

As mentioned above, the penicillin production pro-
cess features high non-linearity and time varying
parameters, and thus mathematical models are difficult
to derive. In fact, none of the existing models for the
penicillin production process describes it accurately. A
good approximation for tackling such problems is
offered by FasArt and FasBack (Cano-Izquierdo et al.,
1996) hybrid systems that combine the adaptability of
the Adaptive Resonance Theory (ART) (Grossberg,
1976) family of neural networks, with the capability of
fuzzy sets theory (Zadeh, 1965) to express knowledge
with rules. Based on Fuzzy ARTMAP (Carpenter,
Grossberg, Markuzon, & Reynolds, 1992) architecture
(and inheriting its structure, shown in Fig. 2b), FasArt
and FasBack were proposed to overcome several
ambiguities observed in Fuzzy ARTMAP, introducing
fuzzy logic in a formal way, so that learning is
equivalent to generating a set of fuzzy rules, and
prediction consists of the use of a fuzzy inference engine
with such rules. As an emergent result, they are more
robust in the presence of noise in the training data
(Cano-Izquierdo et al., 2001).
As fuzzy systems, FasArt and FasBack have a number

of fuzzy rules with fuzzy antecedents (IF part), stored in
the ARTa module, and fuzzy consequents (THEN part),
stored in the ARTb module. The inter-ART module
links them in a many-to-one mapping, i.e. different
antecedents may have the same consequent. Examples of
such fuzzy rules are shown in Fig. 12. A rule is true if all

its antecedent components belong to their respective
fuzzy set, as shown for input vector ðF ðtÞ;CPRðtÞ;
CPRðt � 1Þ;CPRðt � 2ÞÞ in the figure, where F is the
feed and CPR is the carbon dioxide production rate.
However, a fuzzy rule is not either true or not true;
rather, it is true to some degree. For rules in Fig. 12, this
degree is calculated using the product law, ZF ðtÞ � ZCPRðtÞ �
ZCPRðt�1Þ � ZCPRðt�2Þ; where Z represents a fuzzy member-
ship function to a fuzzy set associated to the neuron and
computed from its weights, as shown pictorially in
Fig. 2a. It is noteworthy that several rules can be true to
some extent at the same time, and therefore participate
in producing the output, which is computed as a
weighted average of the THEN part of all active rules.
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Fig. 2. Elements of the neuro-fuzzy systems FasArt and FasBack: (a) One dimensional fuzzy membership function for fuzzy set j; and the associated
weights, wj ; cj and wc

j : For an input pattern x; the membership degree to the fuzzy set is given by Z: (b) Network architecture, consisting of a Fuzzy
ARTa module, where the antecedents of the fuzzy rules are stored, a Fuzzy ARTb module that holds the consequents, and the inter-ART module,

that relates them.
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As neural networks, FasArt and FasBack can be seen
as two modules (ARTa and ARTb) that cluster samples
in the input and output spaces, and an inter-ART
module that map the input clusters into the output
clusters (or equivalently, that relates the IF part of the
rules to the THEN part). These modules have some
user-tuned parameters that allow for control of how
learning takes place: rA;rB (vigilance parameters)
determine how fine (i.e. how specific) the clustering of
antecedents and consequents should be; gA; gB (fuzzifica-
tion rates) indicate how fuzzy or crisp antecedents and
consequents clusters are; finally bA; bB;b

C
A ;b

C
B (learning

rates) control the degree in which the new knowledge
replaces the old one.
During the learning stage, these modules build the

fuzzy rules as follows. Given a training input vector a
and its associated output b; they must be normalized
into ½0; 1
M and their complementary code representation
is calculated as Ia ¼ ða; acÞ ¼ ða; 1� aÞ and Ib ¼ ðb; bcÞ ¼
ðb; 1� bÞ:
Vector Ia is compared to existing fuzzy templates,

stored in ARTa: Since the template j is stored in network
weights wj and cj (see Fig. 2a). The similarity of the
pattern to template j (i.e. the membership degree of the
pattern to fuzzy set j) is given by

ZRj
ðIaÞ ¼

YM
i¼1

ZjiðIiÞ; ð2Þ

where

ZjiðIiÞ ¼

max 0;
gaðI

a
i � wa

ji þ 1Þ

gaðc
a
ji � wa

ji þ 1Þ

 !
if Ia

i pca
ji;

max 0;
gað1� Ia

i � wa
ji þ 1Þ

gað1� ca
ji � wa

ji þ 1Þ

 !
if Ia

i > ca
ji:

8>>>>><
>>>>>:

ð3Þ

Then a winner node J is selected, to be that most similar
to the pattern, i.e.

J ¼ argmax
j

fZRj
g: ð4Þ

However, even if this template is the most similar,
it may be because it is too general. The template is
adequate if

jIa4wa
J j

jIaj
Xra: ð5Þ

In this case resonance is said to occur. Otherwise, unit J

inhibited for the rest of this pattern presentation, and a
new winner is searched for, or a new one is committed (a
new template is created) if none of the existing units
meet Eq. (5).
Similarly procedures are carried out in ARTb; to

determine the template that best matches pattern Ib; say
node K :
In that state, the network is predicting that template J

in the input space maps into template K in the output
space. If that is correct, learning proceeds in ARTa and
ARTb according to Eqs. (7)–(10). If, however, the
network had previously learned that template J maps
into an ARTb template other than K ; inter-ART reset

occurs, causing the inhibition of unit J in ARTa: In
addition, ra is raised temporarily by

ra ¼
jIa4wa

J j
jIaj

ð6Þ

so that a new winner J is selected in ARTa; that is more
specific than the inhibited one.
When learning takes place, templates J in ARTa and

K in ARTb are updated to reflect the influence of the
input vectors, by modifying weights w and c as follows:

w
aðnewÞ
J ¼ baðI

a4w
aðoldÞ
J Þ þ ð1� baÞw

aðoldÞ
J ; ð7Þ

w
bðnewÞ
K ¼ bbðI

b4w
bðoldÞ
K Þ þ ð1� bbÞw

bðoldÞ
K ; ð8Þ

c
aðnewÞ
J ¼ bc

aI
a þ ð1� bc

aÞc
aðoldÞ
J ; ð9Þ

c
bðnewÞ
K ¼ bc

bI
b þ ð1� bc

bÞc
bðoldÞ
K : ð10Þ

If some unit in module is newly committed, fast learning

is performed (i.e. b ¼ bc ¼ 1).
Besides, the inter-ART map is modified so that wab

JK ¼
1; and all other wab

Jk ¼ 0; to learn that template J in
ARTa predicts template K in ARTb:
Through this process, FasArt and FasBack decide

both the number of fuzzy rules, and the shape of their
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antecedents, using only the available training data, and
no a priori knowledge.
During the prediction stage, for every input pattern a

FasArt and FasBack work as fuzzy logic systems
predicting the output. They calculate the normalization
of vector a; complementary code representation Ia; and
membership of this pattern to each of the ARTa

templates using Eq. (2). Each of these ARTa templates
predict one ARTb template, but the predicted output is
obtained by defuzzification using the average of the
fuzzy centers (see Wang, 1994):

yðIaÞ ¼

PNb

k¼1

PNa

j¼1 Z
a
Rj
ðIaÞwab

jk c
b
kPNb

k¼1

PNa

j¼1 Za
Rj
ðIaÞwab

jk

; ð11Þ

where Na and Nb are the number of templates in ARTa

and ARTb; respectively, and cb
k is the point where Z

b
Rk
is

maximum.
FasBack is a modification of FasArt, that uses the

backpropagation algorithm (Rumelhart & McClelland,
1986) to refine learning in order to reduce global error,
by locally re-learning the wrong input/output relations.
This is carried out by using the descending gradient
method, varying parameters (weights) in the direction
indicated by the derivative of error with respect to the
parameters vector (Wang, 1994). Furthermore, a pen-
alty method is used to reduce the influence of wrong
rules, although these rules are not completely forgotten
and can be recalled if they become valid again. This
penalty method is implemented letting weight wab

jk be
smaller than 1 (in FasArt, wab

jk ¼ 1 means that template j

in ARTa predicts template k in ARTb).
Therefore, applying the descending gradient method,

new learning rules can be deduced for weights ca
J ; cb

K and
wab

jk (Cano-Izquierdo et al., 2001), as follows:

c
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ðIÞ
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jmÞZRi

ðIÞPNb

l

PNa

k¼1w
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kl ZRk

ðIÞ
;

ð14Þ

where Eqs. (12) and (14) are repeated for each element m

of the error vector.
Due to the fact that this refining is local, and old rules

are not completely forgotten, adaptation is stable and
can be carried out on-line, without the need for storing
previously learned patterns, as it would be the case with
multilayer perceptrons using the backpropagation learn-
ing algorithm. With parameters r and g it is possible to
balance the compromise between complexity and
accuracy. However, because for the same r and g values
FasBack algorithm will improve FasArt accuracy
(Cano-Izquierdo et al., 2001), these parameters can be
more relaxed in FasBack. Therefore, it will achieve
similar accuracy, but with less complexity.
A more detailed discussion on FasArt and FasBack

algorithm and properties can be found in Cano-
Izquierdo et al. (2001).
4. Soft sensor implementation with FasArt and FasBack

On-line measurements of the main process variables
are rare in biotechnological processes due to the lack of
accurate, cheap on-line sensors that are robust in
industrial conditions. Therefore, software sensors be-
come important tools for supervising the fermentation.
Some FasArt models were developed to monitor
important variables, such as biomass, penicillin produc-
tion and viscosity. FasArt and FasBack, as other neuro-
fuzzy systems, are capable of learning fuzzy rules from
examples. They are suitable as soft sensors to estimate
unmeasured variables and also to provide some ex-
planation of how this estimation is done.
To build soft sensors is necessary to determine which

variables are informative to predict another variable.
The variables were chosen after successive estimations
using methods inspired in multivariable regression
(Farlow, 1984). Then, data must be collected including
values of the input variables and that of the variables to
be predicted, and a training set is generated. It must be
noted that though the training process can be carried
out off-line, all input variables should be measurable
on-line.
Once soft sensors are trained, they can be used to

estimate the values of variables that are not easily
measured from the values of those that can be measured
on-line. Moreover, due to the incremental learning
capability of FasArt and FasBack, the sensors can
improve their knowledge during the performance phase
if actual values of the predicted variables are obtained
with a delay.
5. IMC implementation with FasArt and FasBack

The Internal Model Control concept refers to a group
of methods that have been proposed since the 1970s with
the objective of developing control strategies that
combine the easy interpretation featured by classical
controllers such as PID, with capabilities to deal with
parameter uncertainty, noise in the signals and process
constraints. For these reasons, these methods have been
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widely implemented in the chemical industry (Braatz,
1996).
The basic IMC structure can be adapted to different

control problems: control of SISO systems, non-linear
control or multivariate control (Economou et al., 1986;
Garcia & Morari, 1985). Fig. 3 shows the IMC structure
for the control of non-linear systems, in which a model
of the plant M is placed in parallel with the actual plant
P; so that if the model is perfect, the feedback h is equal
to the plant perturbation d: In such a case the system
behaves as it in an open loop, thus overcoming the
instabilities associated with the feedback (Morari &
Zafiriou, 1998).
Though any feedback controller can be structured as

an IMC, and conversely an IMC can be transformed
into feedback form, the design of the controller
associated with an IMC is easier than that associated
to a feedback structure. This is due to the fact that IMC
structure allows explicit inclusion of robustness as a
design objective, with the use of the estimated perturba-
tion as feedback signal. This allows IMC to have dual
stability, perfect control and zero offset properties
(Garcia & Morari, 1982). Furthermore, it has been
proved that these IMC properties can be extended to
controllers for non-linear plants (Economou et al.,
1986). The IMC stability property requires conditions
for the input–output stability of the plant and the
controller and the availability of a plant model that is
accurate enough. In the penicillin fermentation process
the input–output stability of the plant is obviously
guaranteed, since the quantity of biomass and products
that can be yielded are limited by the feeding. The
perfect control and zero offset properties are based on
the use of controllers that approximate plant inverse
dynamics.
Despite these advantages, the lack of either the plant

model or the inverse model is a serious drawback, and
often this is the case for bioprocesses since valid
analytical models are not available, or are not accurate
enough. Moreover, even if a plant model M was
available, inverting it to build the control module C is
not always possible due to the fact that either the inverse
may not exist, or its implementation may not be feasible.
Reasons for this could be that M is a non-minimum
phase model, has time delays, or even that using its
inverse would demand high gain loops.
Neuro-fuzzy methods provide a solution to build

model and control modules by learning direct and
inverse dynamics, and are well suited for non-linear
plant identification (Lee, Jeon, Park, & Chang, 2002;
Vlassides, Ferrier, & Block, 2001). Among them, FasArt
and FasBack neuro-fuzzy systems (Cano-Izquierdo
et al., 2001) feature fast stable learning guided by
matching and error minimization, fuzzy representation
of the knowledge, which allows the inclusion of expert
rules, and good MIMO identification performance.
Thus they are appropriate for building IMC strategies.
These features allow the controller and the model to
adapt to plant variations, permitting the design of an
adaptive IMC (AIMC), which is of great interest in the
control of a penicillin plant, in which not only
parameters vary with time due to production degrada-
tion or strain mutations, but production results also
vary from fermentation to fermentation even under
the same conditions. Moreover, the possibility of
interpreting the rules corresponding to C and M

modules within the IMC framework allows experts
to have an overall understanding of the system behavior
at all times. Thus, if the performance is incorrect,
it is possible to carry out an independent analysis
of the model and the controller to find out the causes of
the problem. In addition, FasArt and FasBack limit
their output range to that learned during the training,
hence ensuring input–output stability of the control
module C:
One issue that arises when building IMC strategies

with neuro-fuzzy systems is how to build modules M

and C: Deriving M consists of training a network to
replicate plant dynamics. However, FasArt and Fas-
Back offer two different ways to obtain the control
module C:
Inverting the fuzzy rules associated with M yields

another set of rules that represent the inverse dynamics,
as shown by (G !omez-S!anchez, Cano-Izquierdo, Ara !uzo-
Bravo, Dimitriadis, & L !opez-Coronado, 1998), thus
being a fuzzy module C: The building of such a
control module requires one model learning (direct)
and the availability of an inversion method. On
the other hand, a neuro-fuzzy system could be applied
to learn inverse dynamics. In this case, module C can be
built with a single model learning (inverse), taking as
input signals the outputs of the plant, and as supervision
signals the inputs to the plant. While the former
approach has the advantage of reducing in some
cases the influence of noise (Karniel, Meir, & Inbar,
2001), it is more complex, since some rule inverter is
required. Here, for simplicity, the second approach was
adopted.
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Finally, if adaptation is desired, FasArt/FasBack
modules can be determined in two stages. The first uses
historical data from the plant to endow model and
control modules with initial knowledge, using the
scheme shown in Fig. 4 (Narendra & Parthasarathyu,
1990). A second phase takes place during normal
performance, where fresh data is used to carry out on-
line adaptive learning that enhances the knowledge of
the existing models, as shown in Fig. 5. This is possible
due to specific features of neural networks based on
ART, that allow the learning of new data samples
without catastrophic forgetting of previous knowledge
(Grossberg, 1980). The adaptation of the plant model is
carried out by learning an input/output pair every time a
plant output value becomes available. The adaptation of
the controller, on the contrary, requires knowing how
new data samples alter inverse dynamics. Therefore, for
the controller, an adaptation law as proposed by Hunt
and Sbarbaro (1991) follows:

pðk þ 1Þ ¼ pðkÞ þ a � e � J; ð15Þ

where p is the parameter (weights) vector, e is the
tracking error, J ¼ @ym=@un is the Jacobian matrix of
P

FasArt
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Fig. 4. Direct learning scheme for the off-line learning phase of FasArt

and FasBack.
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Fig. 5. On-line learning scheme for FasArt and FasBack. Since ART systems

inputs and outputs to the blocks that perform the learning. These blocks are m
the plant, calculated numerically using the model, and a
is an adaptation rate.
6. Experimental results

The application of the aforementioned ideas was
carried out in three steps. Initially, for fast prototyping
reasons, the controllers were trained and tested (with
data sets different from the training sets) on a simulated
plant. Subsequently, for security reasons, they were
trained on real data and tested on the simulated plant.
Finally, they were validated on the real plant. This
section will show results achieved in the first and third
steps and the results achieved in the second step are
shown elsewhere (Ara !uzo-Bravo et al., 1999a). In
addition, models for variables other than those to be
controlled were derived, becoming soft sensors useful
for monitoring the real plant, as also reported in this
section. Due to confidentiality reasons, the values of
some parameters and plots are scaled in the range [0,1],
in real experiments.

6.1. Application to a simulated penicillin plant

In order to make fast prototypes and test the
controllers in a safe way, a penicillin simulator was
implemented, with a two-fold purpose: on one hand, it
generated data to train FasBack modules; on the other,
it replaces the actual plant within the AIMC structure
during the test. Among the several mathematical models
of penicillin fermentation revised (Nielsen & Villadsen,
1992; Nestaas & Wang, 1983; Bajpai & ReuX, 1981;
Heijnen et al., 1979), Tiller’s et al. (1994) model was
selected, since it offers a good approximation to some
real cases though it is quite simple. Its mathematical
description is shown in the appendix. It also helped to
check the hypothesis proposed by Mou (1975), stating
that finding a good control for biomass facilitates the
P

M

d
d′

y
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+-FasArt

use learning guided by matching, they need information that flows from

arked in the figure with crossed arrows to make the adaptation explicit.
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control of penicillin production, and furthermore, that
the main control variable is the carbon source feeding F :
Results obtained on the simulated plant, and also those
shown in the next subsection for the real plant, lead us
to conclude that this hypotheses is acceptable in most
cases.

6.1.1. Monitoring

Building soft sensors for the simulated plant is useful
as an initial test of the neuro-fuzzy systems capabilities
to approximate the dynamics of the problem. Moreover,
this study may also help the design of soft sensors for
the real plant, with decisions such as the selection of
input features or the ranges of variables.
For this evaluation soft sensors were derived for two

important variables, biomass and penicillin production,
while viscosity was not considered at this point since all
the mathematical models reviewed (Tiller et al., 1994;
Nielsen & Villadsen, 1992; Nestaas & Wang, 1983;
Bajpai & ReuX, 1981; Heijnen et al., 1979) do not model
the viscosity of the broth; modifying those mathematical
models to reflect the effect of viscosity is out of the scope
of our research. However, as shown later in Section
6.2.1, a soft sensor was derived using real data, that is in
fact a good implicit model of viscosity that can
overcome the lack of mathematical models of this
variable.
To derive soft sensors for biomass and penicillin

production, several nominal batches were simulated
using random feeding laws constrained within certain
bounds, as shown in Fig. 6a, while other inputs were
kept fixed. These data were used to train the neural
models, and several other test unseen batches were used
to evaluate performance (G !omez-S!anchez et al., 1998).
Fig. 6b shows a typical result of biomass prediction,
while average relative root mean square error (RRMSE)
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Fig. 6. Soft sensors of the nominal simulated plant. (a) Random feeding law

feeding laws. (b) Simulation values (solid) and estimations of biomass (+) a
indices can be seen in Table 3 for the prediction made by
FasBack, illustrating the high accuracy achieved.

6.1.2. Control

To validate the proposed control scheme, a PID
controller was tested. An important advantage of PID
control is that it does not require a plant model, since its
parameters can be tuned by trial and error. When the
reference for biomass is set according to Eq. (1), the
controller offers poor tracking and generates a feeding
law that is not feasible since it is highly oscillating. An
increase in the derivative gain would lead to better
tracking but rougher feeding law, even less feasible.
Instead, decreasing the derivative gain allows finding a
feasible feeding, but with a very slow tracking, thus
strongly influencing penicillin production (Ara !uzo-
Bravo et al., 1999a). These results are in agreement
with (Boskovic & Narendra, 1995) who show (in the
case of an alcoholic fermentation with Saccaromyces

cerevisiae) that when the plant is complex (non-linear,
with noise and time variant parameters), PID control is
not satisfactory and more elaborated controllers should
be used.
In order to build modules M and C for the AIMC, 30

fermentations were generated, using feeding laws that
varied randomly but within bounds suggested by
experience (one example of such law is shown in
Fig. 6a), while other inputs were kept fixed in all the
fermentations. To simulate more realistic conditions,
Gaussian noise was added to mass measurements, with
0.1% amplitude (these values would be provided by a
gas spectrometer in a real scenario) and 5% for
laboratory analyses. Although a simulator can provide
continuous measurements of any variable, the labora-
tory variables were down-sampled to realistic rates and
then interpolated to have a closer approach to results
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Table 3

Relative root mean square error (RRMSE) for the soft sensors of

viscosity VIS; penicillin production P; biomass X and control of the

biomass Xc (this index is calculated comparing the actual biomass
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that will be obtained when using real data. Direct and
inverse dynamics were learned using two FasBack
neural networks with 10 training cycles (in each of 30�
240 samples were presented). The inputs, outputs and
nodes of each module are shown in Table 2. Note that
viscosity is a very informative variable in reality, but its
relation to biomass growth it not captured by the
simulation model, and therefore it cannot be used in the
simulation work.
Satisfactory direct and inverse dynamics approxima-

tion allow for the building of an AIMC using these two
modules. The fact that the model reflects the general
behavior of the plant, rather than accurately describing
the actual plant, it penalizes control performance. This
is however, overcome because of adaptation, achieving a
good tracking of the reference, as shown in Fig. 7, and
quantitatively in Table 3.
Moreover, the proposed controller performs well in

harder conditions. Fig. 8 shows its capabilities to
compensate noise in plant outputs. In addition, Fig. 9
shows the performance in an experiment that simulates
the influence of cell damage by lysis and shear forces
Table 2

Input vectors (a is the input to ARTa and b is the input to ARTb) and

number of nodes of each neuro-fuzzy module of the plant model and

control model of the AIMC structure for the case of the simulated

penicillin plant

Plant identifier (direct dynamics) Number of nodes

a ¼ ½F ðtÞ;CPRðtÞ;CPRðt � 1Þ;CPRðt � 2Þ
 Na ¼ 47a

b ¼ ½X ðt þ 1Þ
 Nb ¼ 34

Controller (inverse dynamics) Number of nodes

a ¼ ½X ðt þ 1Þ;CPRðtÞ;CPRðt � 1Þ;CPRðt � 2Þ
 Na ¼ 50

b ¼ ½F ðt þ 1Þ
 Nb ¼ 39

aIn the case of adaptation of the nominal model, the number of

nodes in ARTa increases to 48.

Fig. 7. Control of the nominal simulated plant. (a) Without adaptation (b) W

signs show biomass measurement at 8 h sampling intervals, the biomass ref

middle part the feeding control law is shown and in the bottom part the mo

controller. In the case of adaptation, the number of nodes in ARTa increase
(Tiller et al., 1994). It was roughly assumed that these
effects influence mainly biomass yield on sugar (YXS in
the model by Tiller et al., 1994), supposing that it
decreases from 0:5 g=g at time 100 h to 0:1 g=g at the
end of the fermentation. Results in both adaptive cases
show better tracking of reference than the respective
non-adaptive controllers. Though this is a moderate
improvement (as shown through RRMSE in Table 3),
these controllers achieved similar penicillin production
with smoother control laws than the respective non-
adaptive controllers.

6.2. Application to the real plant

In a second stage FasArt and FasBack were trained
using real data to generate neuro-fuzzy modules to
ith adaptation of the model and the controller. In the upper part ‘+’

erence is in solid line and ‘�’ signs show penicillin production. In the
del error, where ‘B’ signs show error values that are fed back to the

s to 48.

value to that of the biomass reference)

Experiment VIS P X Xc

Simulated plant

Fig. 6b — 0.014 0.048 —

Fig. 7a — 0.015 0.052 0.061

Fig. 7b — 0.014 0.049 0.052

Fig. 8a — 0.017 0.056 0.054

Fig. 8b — 0.017 0.054 0.053

Fig. 9a — 0.016 0.069 0.072

Fig. 9b — 0.015 0.062 0.061

Real plant

Average 0.047 0.010 0.17 0.22

‘‘Experiment’’ column refers to the figures that show these results,

except for results reported to the real plant, that are the average of six

batches at Antibi !oticos pilot plant.
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Fig. 8. Control of the simulated plant when there is 5% noise in the measurement of biomass and 0.1% noise in the measurement of CPR: (a)
Without adaptation (b) with adaptation of the model and the controller. In the upper part ‘+’ signs show biomass measurement at 8 h sampling

intervals, the biomass reference is in solid line and ‘�’ signs show penicillin production. In the middle part the feeding control law is shown and in the
bottom part the model error, where ‘B’ signs show error values that are fed back to the controller.

Fig. 9. Control of a time varying simulated plant, where YXS decreases from 0:5 g=g at time 100 h to 0:1 g=g at the end of the fermentation. (a)
Without adaptation (b) With adaptation of the model and the controller. In the upper part ‘+’ signs show biomass measurement at 8 h sampling

intervals, the biomass reference is in solid line and ‘�’ signs show penicillin production. In the middle part the feeding control law is shown and in the
bottom part the model error, where ‘B’ signs show error values that are fed back to the controller.
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monitor the process, as well as to control the pilot plant.
Hence, the IMC was tested in Antibi !oticos Factory at
Le !on, Spain. Experts stated that it was not necessary to
achieve very accurate biomass tracking, as long as
maintaining the desired trend of the expected penicillin
production, and process constraints were not violated.
In this sense, based on SPC ideas (Lennox et al., 2001) a
biomass reference was proposed that averages the
biomass achieved in several successful fermentations.
Training data consisted of a total of 28 fermentations,
including standard (normal behavior under nominal
conditions), and non-standard (normal behavior under
non-nominal conditions). Anomalous fermentations
(non-standard behavior under nominal or non-nominal
conditions) were not used in order not to disturb the
knowledge acquired in the fuzzy rules. Finally, the
modules proposed in this paper were validated with six
fermentations at the pilot plant.
6.2.1. Monitoring

Prior to the implementation of an IMC controller at
Antibi !oticos plant, some FasArt models were developed
to monitor important variables, such as biomass,
penicillin production and viscosity. These models were
trained on the same real data to infer the estimated
variable from information of nutrients additions, agita-
tion and past measurements of some outlet gases.
The biomass concentration is one of those key

variables that cannot be measured on-line. Several
methods have been developed by different researchers
to reconstruct it from information available on-line.
Galvanauskas, Simutis, & Lubbert (1998) conclude that
the measurement of the number and size of cells is
difficult to implement on-line, while a method based on
acid/base consumption during pH control is cheap but
not always applicable. On the other hand, the method
based on laser turbidimeter signals is cheap and easy to
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apply, but the overall preferred method is based on
outlet gas measurements, and features the advantages of
the previous methods but also provides additional
culture information. The biomass software sensor
reported here uses similar input information as in the
latter method, in addition to past values of laboratory
measurements of biomass as an additional input
variable. Results in Fig. 10a show a good biomass
prediction that in turn facilitates the achievement of a
reasonable penicillin profile.
Another relevant variable in the penicillin production

process is the viscosity of the culture. Its importance
stems from the fact that, for an aerobic bioprocess such
as this, it is necessary to maintain dissolved oxygen in
the tank above a certain threshold. This can be achieved
by an adequate oxygen transfer. Usually this capability
is estimated by means of the oxygen transfer coefficient
at the middle of the fermentor KLa

: Though this value
can be estimated from exhaust gas measurements
obtained through paramagnetic and infrared analyzers
(Spriet, Betterman, DeBuyser, Visscher, & Vandamme,
1982) or mass spectrometry (Buckland et al., 1985),
these methods are not valid in the case of viscous
mycelial fermentations (Buckland et al., 1985), as is the
case in penicillin production. This is due to the fact that
(a)

(b)

(c)

Fig. 10. Soft sensors performance on the real plant. The solid lines are

predictions given by FasArt software sensors, while circles denote

laboratory measurements of (a) biomass, (b) viscosity and (c) penicillin

production.
high viscosity considerably reduces such transfer cap-
ability and affects KLa

estimation. However, viscosity
itself can be used as a good oxygen transfer estimator.
Furthermore, a nominal profile of viscosity can be a
good indicator of correct process evolution, and thus it
can be used for fault detection during the fermentation.
Since viscosity measurements are difficult, expensive and
involve a large delay, a viscosity soft sensor becomes
very useful for the fermentation supervisor (G !omez
et al., 1999).
A neuro-fuzzy software sensor of viscosity was

developed by training FasArt on the same real data
mentioned above. Again, feedings and gas measure-
ments were used as inputs. In addition, the viscosity
value obtained in the last laboratory measurement was
used as an input to the predictor. Results for one unseen
fermentation are shown in Fig. 10b, where it can be
noticed that prediction is very accurate.
Finally, a software sensor for penicillin was devel-

oped. It should be understood that the final objective of
the fermentation process is penicillin production, and
therefore after identification and control, research
should be aimed at process optimization. In this sense,
measurements of penicillin should be taken frequently
during fermentation. However, as in the case of viscosity
and biomass, penicillin laboratory measurements have
an important delay and cost. The results of the penicillin
soft sensor for one unseen fermentation are shown in
Fig. 10c, where it can be seen that prediction is very
accurate. This illustrates how soft sensors developed
here can be applied to obtain on-line accurate measure-
ments replacing expensive and difficult off-line proce-
dures.

6.2.2. Control

The IMC controller for the real pilot plant was
developed following the same methodology as above. To
train the neuro-fuzzy system corresponding to the M

module, six inputs were used, including information of
nutrients additions, agitation and past measurements of
some outlet gases. Then, the C module was derived
using desired biomass and past measurements of outlet
gases as network inputs, while additions to the tank and
agitation were the outputs of C (the manipulated
variables). Since some of the variables correspond to
plant outputs, they had been obtained through labora-
tory measurements and therefore were sampled at low
rates. Thus they had to be linearly interpolated, but only
for training purposes. This can be done because in the
test stage (on-line control) their values are not necessary
(they are computed by the neuro-fuzzy systems).
Fig. 11 shows the performance of the controller in one

of the six fermentations carried out for validation in the
pilot plant. Although tracking of biomass reference is
not very accurate, the general trend is followed, as
desired by Antibi !oticos experts. Moreover, considering
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Fig. 11. AIMC performance on the real plant. The solid line is the

reference biomass, the dashed line is that predicted by the plant model

and circles denote laboratory measurements.
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that laboratory measurements involve high uncertainty
and the sampling rate is low, the laboratory profile itself
is considered by Antibi !oticos experts only as a trend.
Therefore, this result can be considered satisfactory
since the achieved penicillin production was as high as
that achieved in batches controlled by human experts.
These results point out the feasibility of developing
automatic controllers that may eventually replace hu-
man supervision with similar performance
Moreover, the plant model M produced an output

inferred from gas measurements that were affected by
noise, causing high frequency components in its predic-
tion. However, the trend was consistent with measured
values, showing that IMC is also robust to small
perturbations in plant measurements.
7. Rules extraction and manipulation

The black box behavior of neural networks is
considered a good feature since it allows to model
system dynamics without explicit knowledge or a
mathematical model of the system. However, it is also
a drawback since it hides the way the controller takes
decisions.
Though most neural network architectures have this

black box behavior, FasArt and FasBack organize the
acquired knowledge in the form of fuzzy rules that are
easily interpretable, as illustrated in Fig. 12. The rules
shown were generated by FasBack after having been
trained to learn direct dynamics using data from the real
plant. Rule r3 was generated during the tropophase and
shows how low feed F ðtÞ and fast growth of CPR

(starting from low values, as indicated through CPRðtÞ;
CPRðt � 1Þ and CPRðt � 2Þ) yield low biomass X ðt þ 1Þ;
at the fermentation earlier stages. Rule r21 was generated
during the idiophase, showing how high feed F ðtÞ and
stable high CPR are associated to high biomass X ðt þ
1Þ; in the stable stages. Finally, rule r9 was generated
during the transition from tropophase to idiophase, and
relates average feed F ðtÞ and oscillating average CPR to
an average value of biomass X ðt þ 1Þ: The transition
phase is the period in which the system exhibits richer
dynamics, thus becoming more difficult to predict. This
fact is reflected by a lower confidence for that rule, and
also by higher number of rules generated during this
stage.
From the few fuzzy rules shown in Fig. 12 for direct

dynamics it is also easy to guess how rules describing
inverse dynamics may be, by setting the fuzzy condition
on feed F as a consequent, while using the fuzzy set
related to biomass X as another condition in the IF part
of the rule. This issue is specially interesting since it
permits the introduction of actions to be performed in
the case of violating constraints. To insert these
restrictions in the fuzzy rule base, the input state in
which the control action should trigger must be selected
and expressed as a fuzzy set. Then, the control action
itself should be set as a consequent of the rule. Finally,
this rule can be easily translated into neuro-fuzzy
weights.
As an example, consider the problem of coping with a

significantly high viscosity (VIS), which can be reduced
by setting a high agitation speed (RPM). The following
linguistic rule describes the action proposed by the
expert:

IF VIS IS ‘‘HighViscosity’’

ANDyTHEN

RPM IS ‘‘HighRPM’’:

This rule must be converted into a fuzzy rule, for which
the terms ‘‘HighVisc’’ and ‘‘HighRPM’’ must be
mapped into fuzzy sets (in their respective domains).
As a result, the following fuzzy rule was introduced in
the controller:

IF VIS IS Df600; 700; 800g THEN

RPM IS Df220; 220; 220g

where Dfmin; cen;maxg denotes a triangular member-
ship function that is 0 for values smaller than min and
larger than max; and is maximum at point cen: Other
rules inserted in the controller were

IF VIS IS Df800; 900; 1000g

THEN RPM IS Df220; 220; 220g

AND DF IS

Df�20;�20;�20g

IF VIS IS Df400; 700; 1000g

AND age IS Df50; 75; 100g

THEN RPM IS

Df220; 220; 220g AND

DF IS Df�20;�20;�20g

where DF means a change in the feed initially pro-
posed by the controller. These rules can be easily
transformed into neural network weights through
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r 3

if F(t) is and CPR(t) is and CPR(t−1) is and CPR(t−2) is

93 %

then X(t+1) is with
confidence

r 9 52 %

r21 85 %

Fig. 12. Rules extracted from FasBack after training with the direct dynamics of the real plant.
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normalization of points that determine the triangular
membership functions.
Despite broad literature showing that KB approaches

had already advanced enough to deal with many of the
problems in fermentation processes that remained
unsolved by conventional systems, KB approaches are
still quite rare in the industry in regular operation
(Shioya et al., 1999). Clearly, it would help if KB
approaches were ‘‘transparent’’, thus allowing pigeon-
holing and interpretation of biological phenomena in
connection with them. In this sense, this example
illustrates how the models generated by FasArt and
FasBack are transparent boxes rather than black boxes.
Moreover, since FasArt and FasBack have the cap-
ability of stable learning (i.e. do not suffer from
catastrophic forgetting), they allow modification of the
rule database with heuristic knowledge from experts,
allowing to combine or refine a priori knowledge with
that extracted from the data.
8. Conclusions

The penicillin production process suffers from a lack
of good mathematical models, because of its complexity,
since it is highly non-linear, has time varying para-
meters. It also has many important variables that cannot
be measured on-line, along with others that can present
high levels of noise. While IMC structure features noise
rejection, solving the latter problem, neuro-fuzzy
systems FasArt and FasBack can be used to build plant
model and controller from those variables that are easily
measurable, thus allowing for the extending of IMC
structure to non-linear plant control. In addition,
FasBack on-line adaptive capability can be used to
implement adaptive IMC strategies.
This scheme has been validated on a simulated plant,

under realistic conditions, as well as in a real plant. The
IMC based on these neuro-fuzzy models showed
satisfactory reference tracking, even with noisy data,
while generating feasible profiles for the manipulated
variables, as opposed to a PID controller. Adaptive
IMC strategies, that exploit FasBack on-line learning
feature, were tested in the simulated plant, showing how
adaptation can correct on the fly some of the unexpected
variations occurring along the fermentation. Finally, in
Antibi !oticos real pilot plant, the IMC controller
maintained the general trend of biomass reference, thus
guaranteeing profitable penicillin production, similar to
those achieved in batches controlled by human experts.
This result points out the feasibility of eventually
automating the control of the process that is currently
human-supervised.
In addition, soft sensors were developed to estimate

on-line important variables that were traditionally
measured in the laboratory, as biomass, viscosity and
penicillin. The performance of these soft sensors is
accurate and very helpful for the human supervision and
understanding of the process, or for the implementation
of fault prediction tools.
The tools proposed in this paper can work comple-

mentarily with the current human supervision of the
process: the controller is effective in batches regarded as
standard, while soft sensors can help to detect anom-
alous situations and provide useful information to the
human supervisors to aid their decisions.
Finally, it is noteworthy that FasArt and FasBack

present the possibility of inclusion, manipulation and
generation of linguistic rules, thus offering a means to
gain insight of the process, as well as combining
knowledge extracted data with existing expert knowl-
edge. This feature can help the adoption of this type of
automatic monitoring and control strategies in real
production plants.
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Fig. 13. Production specific rate (left) pðmðX ÞÞ as a function of the
growth specific rate mðX Þ; as stated by Tiller et al. (1994). This profile
can be interpreted as a fuzzy system with four triangular rules (right)

ðM1;M2;M3;M4Þ; where the consequents are singletons with values
y1 ¼ 0; y2 ¼ pmax; y3 ¼ pmax; y4 ¼ 0; and pmax is the maximum

production specific rate.

Table 4

Parameters for the simulation of the fermentor, taken from the first

cultive parameters in Tiller et al. (1994)

Parameter Units Value Parameter Units Value

mSmax h�1 0.06 YPC g/g 0.2

pmax h�1 0.0046 k h�1 0.0006

KS g/l 0.07 mP1 h�1 0.003

mPMmax h 0.03 mP2 h�1 0.014

KPM g/l 2.0 f12 h�2 0.00046

YXS g/g 0.47 am h�2 0.00015

YXPM g/g 0.51 bm h�1 0.001

YPS g/g 1.2 mO g l�1 h�1 0.02975

YXO g/g 1.25 mC g l�1 h�1 0.0221

YPO g/g 6.25 aly h�1 �0.0008
YXC g/g 0.9 bly h�1 3� 10�6

The parameters m are associated to specific growing rates, p to

production, K are kinetic constants, Y yields, m maintenance

coefficients and a; b and f are regulation coefficients depending on

the age.
Appendix A. Mathematical model of penicillin production

The Tiller model (Tiller et al., 1994), is a segregated
model that distinguishes two types of microorganism
populations. One is the population X1; that grows and
produces penicillin, and another is X2 that produces
penicillin without growing. The dynamics of such
populations are given by the following equations:

X ¼ X1 þ X2; ðA:1Þ

dX1

dt
¼ ðmS þ mPMÞX1 � ðD þ k12ÞX2; ðA:2Þ

dX2

dt
¼ k12X1 � ðD þ klyÞX2; ðA:3Þ

where D is the dilution rate, and the parameters of
population change k12 and lysis kly depend on the
reaction average age A according to the equations:

kly ¼ aly þ blyA; ðA:4Þ

k12 ¼ f12A; ðA:5Þ

AðtÞ ¼
1

X ðtÞ

Z t

0

X ðtÞ dt: ðA:6Þ

The kinetic equations associated to the biomass follow a
Monod law:

mS ¼ mSmax

S

KS þ S
; ðA:7Þ

mPM ¼ mPMmax

PM

KPM þ PM
; ðA:8Þ

m ¼ ðmSmax þ mPMÞ
X1

X1 þ X2
; ðA:9Þ

where S is the main substrate associated with the carbon
source, and PM is the pharmamedia, where all the
substrates are lumped. The evolution of such substrates
is given by

dS

dt
¼ �

mS

YXS

X1 �
p

YPS

þ m

� �
X þ F � DS; ðA:10Þ

dPM

dt
¼ �

mPM

YXPM

X1 þ klyX2 � DPM : ðA:11Þ

The penicillin production is given by

dP

dt
¼ pX � ðD þ kÞP; ðA:12Þ

where the production kinetic law p is represented by a
trapezoidal law, which can be implemented with four
fuzzy sets as is shown in Fig. 13. Finally, the evolution
of the main gases involved in the fermentation are given
by the equations:

OUR ¼
mS þ mPM

YXO

X1 þ
p

YPO þ mO

� �
X ; ðA:13Þ

CPR ¼
mS þ mPM

YXC

X1 þ
p

YPC þ mC

� �
X ; ðA:14Þ

where OUR is the oxygen uptake rate and CPR is the
carbon dioxide production rate. All model parameters
are given in Table 4.
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