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Abstract—A new architecture, called ARTMAP, is proposed
to impact a category proliferation problem present in Fuzzy
ARTMAP. Under a probabilistic setting, it seeks a partition of
the input space that optimizes the mutual information with the
output space, but allowing some training error, thus avoiding
overfitting. It implements an inter-ART reset mechanism that
permits handling exceptions correctly, thus using few categories,
especially in high dimensionality problems. It compares favorably
to Fuzzy ARTMAP and Boosted ARTMAP in several synthetic
benchmarks, being more robust to noise than Fuzzy ARTMAP
and degrading less as dimensionality increases. Evaluated on a
real-world task, the recognition of handwritten characters, it
performs comparably to Fuzzy ARTMAP, while generating a
much more compact rule set.

Index Terms—Boosted ARTMAP, category proliferation, excep-
tions, Fuzzy ARTMAP, ARTMAP.

I. INTRODUCTION

A RTIFICIAL neural networks have been successfully ap-
plied to a wide variety of real-world problems and are ca-

pable of outperforming some common symbolic learning algo-
rithms [1]. However, they are not usually applied to problems
in which comprehensibility of the acquired concepts is impor-
tant [2]. This includes tasks where a human supervisor must
have confidence in the way the network makes its predictions,
or detection of salient features hidden in the data and previ-
ously unnoticed [3]. In addition, neural networks could be used
for knowledge refinement if their concepts were easily inter-
pretable [4]. Despite several advances achieved in multilayer
perceptron (MLP) backpropagation-type neural networks [2],
[5], IF-THEN rules can be derived more readily from a Fuzzy
ARTMAP [6] architecture, besides other well-known advan-
tages of adaptive resonance theory (ART) networks. In Fuzzy
ARTMAP each category in the field (Fig. 1) roughly corre-
sponds to a rule. Each node is defined by a weight vector that
can be directly translated into a verbal or algorithmic descrip-
tion of the antecedents of the corresponding rule [7].

Though Fuzzy ARTMAP inherently represents acquired
knowledge in the form of IF-THEN rules, large or noisy
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datasets typically cause Fuzzy ARTMAP to generate too many
rules [7]. This problem is known as category proliferation [8].
It is due to the application of the match tracking mechanism,
that however is necessary to guarantee fast, accurate, on line
learning. This mechanism is fired after a pattern has been
presented, if the selected category in ARTpredicts a wrong
label: vigilance is raised and a finer or new category is selected.
Unnecessary categories will be committed to learn noisy
patterns [9].

Category proliferation in Fuzzy ARTMAP has been handled
in different ways in the literature. It can be overcome by a rule
extraction process, after training has been completed, which
proceeds by selecting a small set of highly predictive categories
[7]. Other approaches propose modifications of the architecture
or the training algorithm. Distributed ARTMAP (dARTMAP)
[10] introduces distributed coding to avoid commitment of un-
necessary categories, but category proliferation is only reduced
for a particular type of problem [11]. Gaussian ARTMAP [9]
defines the ART choice and match functions to be the discrim-
inant function of a Gaussian classifier, achieving a reduced
number of categories along with better performance than Fuzzy
ARTMAP when trained on noisy data. However, geometric
interpretation of categories changes in these architectures, and
therefore dARTMAP and Gaussian ARTMAP are not useful
for IF-THEN rule extraction.

Boosted ARTMAP [12] defines a probabilistic setting to eval-
uate the need for committing new categories, without modi-
fying the architecture of unsupervised Fuzzy ART modules. The
inter-ART reset mechanism is suppressed and thus an unsuper-
vised on-line learning cycle is performed. An off-line evaluation
of the training error will determine if a new cycle with higher
vigilance is required to create finer categories. This approach
optimizes the size of categories, so that a reduced set of them is
generated. However, because of the lack of an inter-ART reset
mechanism, Boosted ARTMAP cannot handle exceptions prop-
erly, as discussed in Section III.

In this paper, ARTMAP (read MicroARTMAP, use of Mu-
tual Information for Category Reduction in fuzzy ARTMAP)
architecture is proposed, which combines probabilistic informa-
tion in order to reduce the number of categories by optimizing
their sizes and the use of an inter-ART reset mechanism which
will allow the correct treatment of exceptions.

The rest of this paper is organized as follows: for com-
pleteness, Section II briefly summarizes Fuzzy ARTMAP
architecture and training algorithm, discussing the category
proliferation problem. Section III reviews Boosted ARTMAP,
as one relevant architecture to impact category proliferation

1045–9227/02$17.00 © 2002 IEEE
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Fig. 1. Fuzzy ARTMAP architecture [6]. In ARTmodule, inputa is complemented to form vectorI , that is transmitted toF throughF . Category choice in
ART reflects inF activity,y . The same process is carried out in ART. If ART prediction is disconfirmed by ART, match tracking proceeds, raising ART
vigilance, so that� > jI ^w j=jI j and a new ART category is searched, that correctly predictsb.

while preserving original Fuzzy ART modules. The proposed
ARTMAP architecture is presented in Section IV. Sec-

tion V presents a comparative evaluation ofARTMAP with
Fuzzy ARTMAP and Boosted ARTMAP, on variations of the
well-known circle-in-square benchmark and in the difficult
real-world task of handwriting recognition. Finally Section VI
draws the main conclusions and outlines future research tasks.

II. FUZZY ARTMAP

Fuzzy ARTMAP [6] is the most popular architecture derived
from ART. It is capable of performing fast, stable learning in a
supervised setting. In includes two unsupervised Fuzzy ART
[8] modules, that partition the input and output spaces; how-
ever, fuzzy ARTMAP may suffer from category proliferation
[8]–[10]. This section reviews the architecture and dynamics
of Fuzzy ARTMAP and thus serves as a basis for Boosted
ARTMAP [12] and ARTMAP, the proposed architecture.
Emphasis will be placed on the causes of category proliferation.

A. Fuzzy ART

Fuzzy ART [8] is an extension of the original binary ART
1 system to the analog domain through the use of fuzzy AND
operator ( ), instead of the logical intersection. Fuzzy ART
is a modular network (see Fig. 1) that includes an input field
of nodes that store the current input vector; a choice field
that contains the active categories; and a matching fieldthat
receives bottom-up input from and top-down input from .

The activity vector is denoted by
. The and activity vectors are

and , respectively. Each
node is called a category and represents a prototype of the pat-
terns selecting that category during the self-organizing activity
of the Fuzzy ART module. Associated to eachcategory node

there is a vector
of adaptive weights, or long-term memory (LTM) traces. This
weight vector subsumes both the bottom-up and top-down
weight vectors of ART 1.

Initially all weights are set to one, since all categories are
uncommitted. When a category is first selected then it becomes
committed[6] and as patterns are learned its associated weights
decrease, but never increase. Thus eachconverges to a limit
and learning is stable.

1) Category Choice:The choice field nodes operate with
winner-take-all dynamics, i.e., at most onenode can become
active at a given time, that is said to win the competition. To
select this node for a given inputachoice function is com-
puted for each nodealready committed in , given by

(1)

where denotes the fuzzy intersection [13] defined by
, is the choice parameter (typically

) and denotes the norm defined by

(2)

The th winner node in is selected by
. When a category is chosen and

for .
measures the degree of match between the current input

and the LTM weights of theth node, . In particular, the
ratio reflects the fuzzy subsethood of with
respect to . If there is any that is a fuzzy subset of, then

and therefore for . The
choice parameter determines the winner category when both

and are fuzzy subsets of, by selecting the nodesuch
that .

2) Resonance:The match field ( ) activity vector obeys

if is inactive
if the th node is active.

(3)

Vector , that represents an expected template if nodeis
active, is fed down from and the input vector comes from
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. They are combined to form, which must be sufficiently
similar to to meet the vigilance criterion

(4)

where is the vigilance parameter.
When this happens, the network is said to enter aresonance

state and the LTM weight vector can be updated. Otherwise,
if mismatchhappens, the system is reset and
unit is inhibited (i.e., ) for the rest of this input pre-
sentation. If no node is found to meet the vigilance criterion,
a new node is committed.

3) Learning: When search is finished, the weight vector
is updated according to

(5)

where is the learning rate parameter. If then
fast learningis carried out. Throughout this paper, fast learning
will be assumed for all networks.

4) Complement Coding:Normalization of Fuzzy ART in-
puts prevents category proliferation to some extent [8]. Normal-
ization is achieved if for all inputs . One way to nor-
malize the input and preserve amplitude information is comple-
ment coding. If denotes the original input, then take

, where and . This
vector is normalized since .

Thus, the new layer input vector is complement coded
and both and are of dimension .

B. Fuzzy ARTMAP

Fuzzy ARTMAP [6] is a supervised neural architecture that
incorporates two Fuzzy ART modules, called ARTand ART ,
linking them via an inter-ART module called themap field,
as shown in Fig. 1. This field retains predictive associations
between categories and implements thematch tracking mech-
anism, i.e., the ART vigilance parameter is increased in re-
sponse to a predictive mistmach at ART. This process is nec-
essary in order to guarantee that the category that resonates has
the highest degree of matching to the input pattern.

The two Fuzzy ART modules accept inputs in com-
plement code, denoted and ,
where is the stimulus and is the response. For ART,

denotes the output vector;
denotes the output vector; and

is the th ART weight vector. For
ART , and are
the output vectors of fields and , respectively, while

is the th ART weight vector. For
the map field, denotes the output
vector and denotes the weight vector

for the th node to . All activity vectors are reset to zero
between input presentations.

Map Field Activation: The map field receives input
from either or both of the ART and ART category fields.
Therefore, its activation is governed by both and activity
as shown in (6) at the bottom of the page.

If the th category is active, it sends input to the map field
via the weights , which represent the possible predictive
classes. If is also active, then remains active only if
ART predicts the same category as ART, i.e., if
fails to confirm the prediction made by . In such a case the
match tracking mechanism is triggered.

Match Tracking: When an input is first presented to ART,
the vigilance parameter is set to its baseline value, . The
map field vigilance parameter governs matching between
categories in ART and ART , i.e., if a predic-
tive error occurs. In this case match tracking raisessuch that

and search for a new coding node is
triggered. This process is performed until an ARTcategory is
selected that correctly predicts ARTclass, or a new category is
committed in ART .

Map Field Learning: LTM traces associated with
paths are stored in the map field weight matrix. Initially
, and . When resonance oc-

curs with the ART th category active, is set equal to .
The th category in ART always predict the same category in
ART .

C. Category Proliferation in Fuzzy ARTMAP

Category proliferation may occur in any system, including
ART networks, run with fast, on-line learning. Thus many works
have been devoted to reducing this problem [7], [9], [10], [12].
This section will analyze how a inter-ART reset mechanism is
required, but the match tracking process carried out in Fuzzy
ARTMAP causes unnecessary category recruitment.

Fuzzy ART categories can be seen as hyperboxes,, whose
corners are defined by their associated weight vectors. Using
fast learning and complement coding, and equal
the minimum and maximum values of theth component among
all the patterns that selected category. Therefore, we can
define the th category size by

(7)

where is the range along theth
component of the patterns learned by theth category.

When a category learns a pattern, either this pattern is already
inside the hyperbox, or the hyperbox enlarges just enough to in-
clude it. The choice function (1) determines the winner category,
showing preference for those whose hyperbox needs smaller

if the th node is active and is active
if the th node is active and is inactive
if is inactive and is active
if is inactive and is inactive.

(6)
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Fig. 2. Geometric representation of two hyperboxes associated to Fuzzy ART
categories in a two-dimensional input space. If patterna is presented, category
R will be selected, since it produces higher choice value. If its expanded size
jR � a j would satisfy (8), it may definitely enlarge. In a supervised setting,
if category 2 predicts the wrong class label, though category 1 may predict the
correct one, a new hyperbox will be created of smaller size thanjR � a j,
because of the match tracking mechanism. Patterna will select categoryR ,
unless their predictions do not match.

changes to cover the pattern and whose size is smaller (larger
). In addition, the vigilance condition (4) sets an upper limit

on the hyperbox size, given by

(8)

which applies for Fuzzy ART and also for Fuzzy ARTMAP
considering , the baseline vigilance parameter. However, as
match tracking can raise during one pattern presentation, this
bound may be very relaxed for Fuzzy ARTMAP. In fact, in the
experiments shown in this paper will be set to zero and thus
this inequality is meaningless. However, it is important for other
architectures discussed later in the paper.

These ideas are illustrated for a two-dimensional case in
Fig. 2. First consider a Fuzzy ART architecture (i.e., unsu-
pervised learning is performed), with two categories already
existing, with associated weights and

and sizes and .
If a new pattern is presented, then the choice
function is evaluated for each category, using (1), yielding

and (with ). In this case,
category wins the competition and its hyperbox could be
eventually enlarged to cover pattern, yielding a hyperbox
denoted by . However, if is such that
then this unit is reset. If so, category would be selected
and the vigilance criterion evaluated on it. If it could not be
satisfied, a new unit with a hyperbox of null size atwould be
created. In an unsupervised setting, pattern will
select category since it implies no changes to its hyperbox.
Note that in Fuzzy ART training is unsupervised and thus the
match tracking mechanism is not present.

Now consider the use of Fuzzy ARTMAP to carry out a su-
pervised learning. While the ARTmodule performs an un-
supervised clustering of the patterns in the input space as de-
scribed above, the match tracking mechanism will ensure that,
for a given input sample , the category that resonates has a
better match, so that if the pattern is presented again this cate-
gory will be selected. Increasing after th category has been
reset implies that the next category selected, say, verifies that

. After learning, the new hyperbox
is the smallest containing the pattern and thus if patternis pre-
sented again it will select this category.

Now consider Fig. 2 and suppose that each category has a dif-
ferent associated class label through the inter-ART map. Con-
sider that pattern has the same class label as that predicted
by category . If this pattern is presented, category will
be selected, since it offers higher choice value. However, since
category predicts a wrong class, the match tracking mech-
anism is triggered raising , by an amount sufficient to have

. Also category is inhibited
and then category is evaluated. However, since the match
tracking mechanism raised , this unit does not meet the vigi-
lance criterion, i.e., and thus
it is also reset. However, if baseline vigilance and cat-
egory had not been already created, because all its patterns
were to be presented later, patterncould have been learned by
category . Thus, the match tracking mechanism, that is nec-
essary to preserve predictive accuracy, can also cause category
proliferation in some circumstances.

On the contrary, if pattern is presented and category
is selected, but their associated labels differ, the match tracking
mechanism will create a new category. This category will be
selected next time is presented and the prediction would be
correct. If hyperbox would have been let to grow to cover

, then and prediction would have been
wrong next time is presented. If additional patterns with the
same class label are close to, they form what in this paper will
be calledpopulated exceptions, i.e., sets of patterns associated
to one class label, with significant probability, surrounded by
other patterns with different class label. However, if patternis
noisy, then the newly created category will seldom be selected
and therefore it could be obviated.

Thus, it can be said that the match tracking mechanism allows
the correct treatment of populated exceptions, but may produce
some category proliferation together with factors such as pattern
presentation order, presence of noise in data or, class overlap.

III. B OOSTEDARTMAP

Boosted ARTMAP [12] attempts to reduce category prolifer-
ation by allowing some error on the training data and letting the
underlying data distribution select the category size. It is a mod-
ification of Fuzzy ARTMAP for conducting boosted learning in
a probabilistic setting. It is designed to improve generalization
by optimizing category size and allowing a small training error.
It is a modification of PROBART [14], which replaces the calcu-
lation of the activity (6) by (9) shown at the bottom of the
next page, where the fuzzy AND operation () is replaced by
the addition ( ). Thus, map field weights now contain informa-
tion about the association frequencies between categories in



62 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 13, NO. 1, JANUARY 2002

and , i.e., the th ART node has been associated times
to the th ART node, during the training. Initially ,

, .
In PROBART there is no match tracking and thus parameter

does not exist. Therefore, the size of categories in ARTis
governed only by . This ensures that a given input to ART
will always select the same category and makes the network
more robust to noise. Nevertheless, for a correct mapping
needs to be very high. Therefore the number of categories is
also large, since very fine categories will be created averywhere
in the input space.

Boosted ARTMAP (BARTMAP) allows categories formed
during training to define their own sizes. It has two unsupervised
fuzzy ART modules, linked by a map whose activation is given
by (9), as in PROBART. However, ARTmodule is modified to
associate a vigilance parameter to each category, instead of
a single . They are usually initialized with low values, which
can result in poor generalization. To correct this, instead of using
a match tracking mechanism, batch training is carried out. After
one training epoch is complete the total training error,, is
computed. Since theth ART category predicts the th class
label that has been associated towith highest frequency, i.e.,

, is given by

(10)

which is the averaged sum of the error contribution of all cat-
egories in ART. This error is compared to a user parameter

. If then the vigilance parameter of nodes with
maximal error contribution is raised, by ,
where is a user parameter, and another training epoch pro-
ceeds. During the training, the size of a category, , will be
limited by its vigilance parameter , as shown by (8).

Through this mechanism, BARTMAP allows some error on
the training set, improving Fuzzy ARTMAP generalization and
reducing the number of categories, when patterns from different
classes overlap or data are noisy. In addition, category size can
be determined by the underlying distribution rather than a vigi-
lance parameter.

However, since no inter-ART reset is performed, a hyperbox
cannot be created inside another hyperbox. This is important
when many patterns with one class label are surrounded by
many other patterns with a different class label, i.e., the so
calledpopulated exceptions, as Fig. 3(a). Since the size of the
surrounding region increases with the dimensionality of the
input space, this limitation of BARTMAP will become critical
in problems with a large number of input features.

(a) (b)

(c) (d)

Fig. 3. The circle-in-the-square problem is depicted in (a), while (b), (c),
and (d) show the hyperboxes created by Fuzzy ARTMAP, BARTMAP and
�ARTMAP, respectively, for the best category structure (i.e., the least cate-
gories) among those resulting from the ten training sets.

IV. ARTMAP

Boosted ARTMAP offers a means to solve the Fuzzy
ARTMAP category proliferation problem, while preserving
the association of each category to a hyperbox, which allows
straight IF-THEN rule extraction from the learned weights.
It suppresses the match tracking mechanism, that may cause
category proliferation on noisy data, though it guarantees accu-
racy. Therefore, BARTMAP introduced an off-line evaluation
mechanism in order to preserve predictive accuracy. However,
BARTMAP lacks of an inter-ART reset mechanism that allows
correct handling ofpopulated exceptions. ARTMAP is pro-
posed as a modification of Fuzzy ARTMAP that includes an
inter-ART reset mechanism, that does not raise ARTvigilance
and thus does not cause category proliferation, while the
predictive accuracy is guaranteed by an off-line learning stage.

The architecture of ARTMAP is similar to that of Fuzzy
ARTMAP (Fig. 1): there are two unsupervised Fuzzy ART
modules, that perform a clustering in the input and output spaces,
linked by an associative map field governed by (9), i.e., one-to-
many relations are allowed and their probabilistic
information stored in weights, as in PROBART. By storing
probabilistic information the need of committing a new category
can be evaluated in terms of incrementing the correctness of

if the th node is active and is active
if the th node is active and is inactive
if is inactive and is active
if is inactive and is inactive

(9)
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the mapping. In addition, an off-line map field with weights
is introduced, which stores the probability of

relations when inter-ART reset is disabled, i.e., in prediction
mode. Therefore these weights allow the system to evaluate
the predictive entropy of the training set. Finally, a vigilance
parameter is associated to each category node in ART, similarly
to BARTMAP, so that category size can be determined by the
underlying distribution.

A. Definitions

Given partitions of the input space into sets
and output space into sets , the conditional entropy

, here denoted simply by , is given by

(11)

where is the probability of occurrence of class and is
the conditional probability of assuming . Let us denote

(12)

the contribution to of set .
It is important to remark that the mutual information of

the partitions in and is given by
, where is the entropy for the output space

[15, Ch. 15]. Therefore, for a given (as in classification
tasks), minimizing the conditional entropy is equivalent to the
maximization of the mutual information.

B. ARTMAP Training and Prediction

Before training all weights are initialized as in Fuzzy
ARTMAP, but , , . A
baseline is set as a starting vigilance. This should be set to zero
to minimize the number of categories, unlessa priori knowledge
of the problem indicates that fine categories will be required in all
the input space. In addition, two user parameters and
aredefined tosetupperboundsonand ,asexplainedbelow.

Training proceeds by presenting input–output pairs, ().
When a pattern is presented to ART, a category, say, is se-
lected according to (1) and if it is a newly committed category
then . The reset condition is evaluated usingin (4).
If this condition is not satisfied, this node will be inhibited and a
new search triggered. Patternis presented to ART, selecting
the th category. Then the map field activity is calculated ac-
cording to the PROBART equation (9).

1) Inter-ART Reset:After map field activity has been
calculated, replacing and in (12) by

if

otherwise

(13)

We can calculate that represents the contribution to the total
entropy of the th unit if it was allowed to learn this pattern. If

then this category is too entropic and thus theth
node in ART is inhibited for the rest of this pattern presentation
by setting , but its vigilance parameter isnot raised.
Other categories will be chosen in ARTuntil the entropy con-
tribution criterion is met. If a previously uncommitted category
is selected, say , then , while for
and therefore . Then weights in ART and ART are up-
dated and also in the map field, by .

2) Off-Line Evaluation: After all patterns have been pro-
cessed, the off-line map field is initialized by ,

, and the data are presented again to
update these weights. However, this time the entropy contribu-
tion criterion is not evaluated, so that units are selected in ART
in an unsupervised manner and weights in ARTand ART are
not updated. In fact, this is equivalent to making a test on the
training data and storing the results in weights. Replacing

and in (11) by

(14)

the entropy , is computed and compared to . If
then the mapping defined byARTMAP between the

input and output partitions is too entropic and thus a finer par-
titioning of the input space is necessary to improve predictive
relations. To achieve this, the ARTnode that has maximal
contribution to the total entropy,

, is searched. This node is removed (which means
and ), after the baseline vigilance is set to

(15)

so that newly created categories will have smaller size than,
since the category size is bounded as shown in (8). All the pat-
terns that previously selected theth ART category are pre-
sented again in a new training epoch, while the rest of the pat-
terns are not. This will make a finer partition of the input space
previously covered by the removed category, while the rest of
the categories remain the same. The process carries on until

.
ARTMAP Prediction :As in BARTMAP, ARTMAP pre-

diction is carried out by selecting theth ART category node
that has highest value and then predicting the class label
corresponding to the th ART category node, where

, i.e., is the most frequent
association to node.

C. Discussion

If , and fast learning is assumed, the first
training epoch of ARTMAP will generate as many ARTcat-
egories as existing class labels, i.e., as ARTcategories. This
means that all patterns associated to a given class label will lie
inside the same ARThyperbox, which can be arbitrarily large.
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The off-line evaluation will measure the probabilistic overlap-
ping of the created hyperboxes. This is related to the number
of patterns that select a different category when inter-ART reset
is enabled and when it is disabled, which occurs because the
inter-ART reset does not raise ARTvigilance.

If patterns with different class labels lie apart in the input
space, i.e., there is no overlapping, and learning can
be stopped. However, this overlapping will often be large, i.e.,

and some of the categories must be refined. To re-
fine a hyperbox, it is deleted and all patterns that previously se-
lected it are presented again, but smaller hyperboxes are forced
to cover the same region. Through this batch learning process,
large hyperboxes are placed in regions where all patterns have
the same class label, while small categories are placed in the
boundaries between classes. In addition,populated exceptions
can be handled with one large hyperbox, which is a general rule
and one smaller hyperbox, which represent a specific rule.

Parameter is intended to avoid that nonpopulated
exceptions, i.e., outliers, create new single-point categories.
Though most of the patterns that select one category will
predict the same class label, by setting a few patterns
with a different one can be allowed. In addition, gaussian noise
can be controlled by setting and then tuning
so that it partitions again regions where noise is strong, as in
the problems shown in Section V-C. In the limit, if

ARTMAP suppresses the inter-ART reset and then
behaves similarly to BARTMAP and if too,
the off-line stage is not necessary andARTMAP reduces to a
PROBART network.

As in Fuzzy ARTMAP, ARTMAP rules can be extracted
from the weights in the form

(16)

where “ is ” means “pattern selects theth category” and
is the predicted label. The priority of the rule is the choice

function (1), that reduces to an inverse proportionality to the hy-
perbox size, if patterns are inside hyperboxes. Considering this,

ARTMAP algorithm is related to the way ID3 [16] constructs
decision trees, if categories are theattributeson which rules are
evaluated, as in (16). Initially, the most general rule (category
with largest hyperbox) is evaluated. If the first rule is impure,
ID3 adds an attribute that partitions the patterns in order to in-
crement the information gain, whileARTMAP dynamically
finds some category (another attribute) that augments the mutual
information between input and output partitions. When entropy
has been sufficiently reduced, both ID3 andARTMAP training
algorithms stop. ThoughARTMAP does not generate a deci-
sion tree, its rules are constructed to be as general as possible,
adding others with increasing specificity to refine the general
rules.

V. EXPERIMENTAL WORK

A comparative study of Fuzzy ARTMAP,ARTMAP and
BARTMAP performance will be conduced on several bench-
marks. Performance will be evaluated by the error rate on a
test data set and by the number of categories generated, i.e., the
number of rules that could be extracted. Therefore, the objective

TABLE I
COMMITTED CATEGORIES AND GENERALIZATION ERROR FOR THE

CIRCLE-IN-THE-SQUARE PROBLEM

will be to test the capabilities of each architecture to reduce cat-
egory proliferation, while preserving generalization. The first
set of benchmarks will consist of variations of the well-known
circle-in-the-square problem [17] that has been widely used in
ARTMAP literature [6], [9], [10]. It will serve to illustrate the
concept ofpopulated exceptionand its effect on the training of
the evaluated networks. In addition, the influence of the dimen-
sionality of the input space will be assessed on a variation of
this problem.

Another benchmark, with patterns generated by Gaussian
sources, will test the performance when there is class overlap.
As a particular cause for overlapping, the impact of additive
noise will also be evaluated on the circle-in-the-square bench-
mark.

In addition, all networks will be evaluated in the difficult
real-world task of on-line handwriting recognition, on UNIPEN
[18] uppercase letters. In this problem, there is a definite need
for a reduced set of comprehensible rules, that can be used for
syntactic recognition, or for handwriting reconstruction [19].

In order to achieve maximal generalization, in all the experi-
ments and for the three networks, which will
favor the creation of a smaller number of categories [20]. Fuzzy
ARTMAP is trained until category stability is achieved, i.e., no
more categories are created even if training continues for more
epochs.

A. Circle in the Square

The circle-in-the-square problem [Fig. 3(a)] requires a
system to decide whether points are inside or outside a circle
lying within a square of twice its area [8]. This problem
illustrates the concept ofpopulated exceptionsand there is not
an optimum number of categories since decision boundaries
cannot be described with a finite number of hyperboxes.
Thus, the performance of Fuzzy ARTMAP, BARTMAP and

ARTMAP was evaluated comparing both the number of
committed categories, or generated rules and the generalization
performance. For the experiments, data were generated ran-
domly from an uniform source, to form ten 1000-point training
sets and one single 10 000-point test set. Results are averaged
in Table I, for BARTMAP trained with and

and ARTMAP trained with ,
and .

As shown in Fig. 3(c), BARTMAP must create a number
of categories to cover the region surrounding the circle, since
it cannot create hyperboxes inside others, due to the lack of
an inter-ART reset mechanism. Though Fuzzy ARTMAP has
an inter-ART reset mechanism, because the match tracking
process always raises ARTvigilance, smaller categories are
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TABLE II
COMMITTED CATEGORIES AND GENERALIZATION ERROR FOR THE

OVERLAPPING GAUSSIANS PROBLEM

created. In addition, because Fuzzy ARTMAP must learn to
correctly classify all training patterns, several categories are
created along the circle boundary [see Fig. 3(b)], which im-
prove very slightly generalization performance. Fig. 3(d) also
shows how ARTMAP dedicates only one ARTcategory to
predict the classoutside, while several categories are dedicated
to describe the classcircle, resulting in better generalization
performance, while a reduced set of rules is generated.

In [10], dARTMAP is proposed to impact category prolifer-
ation and evaluated on the circle-in-the-square problem. When
distributed learning is enabled, a pattern can be learned by sev-
eral categories simultaneously, so that the input space need not
be covered thoroughly. However, when the winning ARTcat-
egory node predicts the wrong class label, distributed learning
is disabled and the network behaves like Fuzzy ARTMAP. This
implies that ART vigilance can be raised, creating categories
that are necessary but possibly of small relevance to the gener-
alization error. In [10], dARTMAP is reported to use 10.8 cate-
gories to produce 7.9% generalization error on the circle-in-the-
square problem. As it can be seen,ARTMAP uses a similar
number of rules achieving higher test accuracy, by adequately
positioning the hyperboxes and allowing some errors near class
boundaries.

B. Overlapping Gaussians

In the previous experiment there is no overlap between
classes. However, class overlap is a major cause of category pro-
liferation in Fuzzy ARTMAP, since match tracking is often trig-
gered and small categories are required to cover exceptions that
are statistically unimportant. Consider the problem where points
are generated from five Gaussian sources with means

, , , ,
and deviation

. Each source , ,
and , has probability 1/8 and is associated to the
same class label, while source has probability 1/2
and is associated to a different output class. Therefore, both
classes have the same total probability. The geometry of this
problem resembles the circle-in-the-square problem, but in this
case no zero error decision boundary exists. For performance
comparison, ten 1000-point datasets were generated and one
single 10 000-point test set and all input patterns were nor-
malized to the unit square. The results are shown in Table II,
for BARTMAP trained with and
and ARTMAP trained with , and

.
As seen in Fig. 4(c), BARTMAP can roughly describe source

with a few hyperboxes, dedicating several more to

(a) (b)

(c) (d)

Fig. 4. (a) Patterns from five Gaussian sources, the four outermost associated
to one class label and the inner to a different class label. (b), (c) and (d) show
the hyperboxes created by Fuzzy ARTMAP, BARTMAP, and�ARTMAP,
respectively, for the simplest network structure among those resulting from the
ten training sets.

the other sources, since it cannot represent source
as apopulated exception. Because of this, it generates more
rules than ARTMAP. However, since both BARTMAP and

ARTMAP allow some error in the training set, they do not
commit categories to describe the multiple points of overlap-
ping between classes and therefore generate more compact rule
sets than Fuzzy ARTMAP and have superior generalization per-
formance.

C. Robustness to Noise

The presence of noise in the training data is one major cause
of category proliferation in a fast-learning on-line system [9].
However, if there are just a few outliers, several single-point
categories will be created, with little influence on the predic-
tion error. If additive noise corrupts all data, decision boundaries
are more vague and prediction will degrade. In this situation,
class overlapping occurs and, as shown in the previous experi-
ment, BARTMAP and ARTMAP can allow some error on the
training set and thus it can be expected that they degrade less
than Fuzzy ARTMAP due to additive noise.

To evaluate the impact of noise experimentally, the same
data sets generated for the circle-in-the-square problem (Sec-
tion V-A) were used and additive Gaussian noise added to the
input patterns, i.e., . Different levels of noise
were used, given by , .
Parameters in BARTMAP and and in

ARTMAP, were progressively relaxed as the level of noise
increased, in order to avoid overfitting to noisy data.

Fig. 5 jointly plots the number of categories (abscissa) and
the generalization error (ordinate). The lower left of this graph



66 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 13, NO. 1, JANUARY 2002

Fig. 5. From left to right along each curve, marks represent the number of categories versus the generalization error, for Gaussian noise added to the original
data, of deviation� = k _10 , k = 0; 1; . . . ; 10.

is the desired performance region, where low error is achieved
with few categories. All networks offer their best performance
in the absence of noise and degrade as its level increases. This
is especially noticeable for Fuzzy ARTMAP, that suffers strong
category proliferation and accuracy losses. BARTMAP and

ARTMAP are clearly more robust than Fuzzy ARTMAP, but
ARTMAP degrades more with strong noise. When noise is

low, one single category can be used to describe theoutside
class. However, if noise increases, categories with associated
insideclass label are placed outside the circle. To correct this
effect, more categories predictingoutsideare generated. This is
achieved by increasing . In fact, the last two simulations,

and , were carried out with ,
i.e., without inter-ART reset mechanism and thusARTMAP
behaves similarly to BARTMAP.

D. Influence of Dimensionality

Performance of many statistical and machine learning algo-
rithms degrades in problems with high dimensionality [21]. This
is due to the fact that, as the number of dimensions increases, the
input space will be sampled more sparsely. In addition, because
Fuzzy ART categories are associated to hyperboxes, they can
be inefficient for high dimensionality [9], since the hyperbox is
defined by the minimum and maximum of its data and not by a
tighter curve bound. Therefore, if sampling is sparse, the cate-
gory infers the existence of data where no evidence exists. This
may cause the recruitment of smaller categories at the corners
associated to a different ARTclass label, resulting to poor gen-
eralization on new data.

Though it is convenient for rule interpretation to represent
templates by hyperboxes, it must be assumed that performance
degradation will occur for high dimensionality. This degrada-
tion can be evaluated by defining a series of problems of in-
creasing dimensionality, , but with similar geometry. Here
we propose a generalization of the circle-in-the-square, named
the hypersphere-centered-in-the-hypercube, i.e., it must be de-
cided if points within the unit hypercube also lie or not inside

a hypersphere cocentered with the hypercube. The radius of the
hypersphere is selected so that its intersection with the hyper-
cube has volume 1/2, while the hypercube itself has volume 1.
For the hypersphere is contained in the hyper-
cube, while for larger it is not. This implies that for
the “outside” class will not be connected. Its patterns distribute
along the corners of the cube, which are smaller but many more
as dimension increases. This problem maintains the main fea-
tures through the different dimensions (equal probability to each
class and an inner class surrounded by an outer class) and there-
fore can be used for this study. Experimentally, ten 1000-point
training sets and one single 10 000-point test set were gener-
ated for each problem in the series, from through

. Note that the number of training samples is inde-
pendent of . Training parameters are those indicated above
for the circle-in-the-square problem.

In Fig. 6, from left to right along each curve the number of
categories (abscissa) and the generalization error (ordinate) are
jointly plot, for though . This graph clearly
shows that performance degrades for all three networks as
increases, thoughARTMAP always offers a better solution,
achieving a lower error rate using fewer categories.

It is remarkable that, while relative degradation for
ARTMAP and Fuzzy ARTMAP is similar, BARTMAP is

severely affected. This is due to the lack of an inter-ART
reset mechanism to allow placing hyperboxes inside others.
Thus, many categories must be placed in the boundaries of the
hypersphere [see Fig. 3(c)]. Since increasing dimensionality
means a wider boundary, a larger number of categories need
to be recruited. This example shows that handlingpopulated
exceptionscorrectly is important in concept learning problems
defined on a high dimensional input space.

E. On-Line Handwriting Recognition

On-line handwriting recognition has been in the focus of re-
search for many years [22]. Currently, it is a key issue in the de-
velopment of wireless computing that requires small, easy to use
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Fig. 6. From left to right along each curve, marks represent the number of categories vs. the generalization error, for the hypersphere-in-the-hypercube problem,
anM -dimensional generalization of the circle-in-the-square problem, forM = 1 throughM = 10.

devices [23]. Nevertheless, it presents intrinsic difficulties due
to the variability existing among writers, languages, or and dig-
itizing pads. Additionally, recognition of on-line written char-
acters normally involves several tasks, including segmentation
of sentences into words, words into characters and characters
into strokes. This last step is motivated by biological models of
handwriting generation. According to [24], a stroke is a piece of
handwriting generated by a simple motor impulse to the hand
and a component (handwriting between pen lifts) is made of a
series of overlapping strokes. Besides segmentation, discrimi-
nant features must be extracted for constructing the input to the
classifier.

Once handwriting data have been reduced to vectors of fea-
tures, machine learning approaches can be taken to build a clas-
sifier [25]. However, in order to better understand the human
capability for both recognition and generation tasks, it is useful
to build a syntactic recognizer with a reduced number of rules
[19], as noted by the many different research approaches made
to this problem (e.g., [26]). For this purpose, Fuzzy ARTMAP
and especially ARTMAP, can be used.

For the experiment shown here, data were taken from the
train_r01_v02 UNIPEN data release. The UNIPEN project
[18] has collected more than 5 000 000 characters, from many
writers, languages, and pads, so that conclusions can be general
enough. Here 2106 samples were selected to build the training
set, while 2092 different samples form the test set, provided
that all writers contribute to both sets and samples are restricted
to be upper case letters, i.e., there are 26 class labels, though
similar conclusions can be extracted from the recognition of
digits or isolated lower case letters. Characters were segmented
using velocity minima, as inspired by biological models [24]
and 11 features were extracted for each stroke: length, three
angles that describe the curvature of the stroke (each angle is
represented by its sine and cosine and therefore six features
are required), last coordinate, mean and mean values
of the strokes coordinates and a discrete feature indicating if
the stroke starts and/or ends a component. The feature vector
corresponding to a character is made by the sum of the features

TABLE III
TOTAL NUMBER OFRULES AND AVERAGE ERRORRATE FOR THERECOGNITION

OF ON-LINE HANDWRITTEN UPPERCASE LETTERS

of its strokes, plus one additional feature, the ratio between
the sides of the box containing the whole character. For more
details see [25].

Since training samples have different numbers of strokes, six
different networks are trained, with networktrained only on
samples with strokes, . Therefore, the dimension
of input vectors is different for each network, namely . If
a character has more than six strokes it is considered badly seg-
mented and counted as a wrong prediction. All networks were
trained, with , and for

ARTMAP and , for BARTMAP.
In this difficult task, given a test pattern each network will

provide a ranked list of all possible class labels. This informa-
tion can be used by a postprocessing algorithm using contextual
information, like [27], where a syllabic dictionary is employed.
Therefore, in this work a prediction will be considered cor-
rect if the expected class label is among the first two predicted.
Table III shows total number of rules, comprising the six net-
works (each devoted to characters of a given number of strokes)
and the average rate of the expected class label not being among
the first two ranked by the classifier.

Fuzzy ARTMAP achieves a high accuracy, but it commits
a high number of categories, i.e., it generates a large rule set.
On the contrary, ARTMAP achieves slightly lower recognition
rates with a much simpler set of rules. Considering that there are
26 output class labels, an average of four rules for class label is
generated, while Fuzzy ARTMAP dedicates an average of ten.

This can be explained considering that, due to the high dimen-
sionality of the problems and the variability of handwriting, pat-
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terns with the same class label are distributed in several “clouds”
in the input space, which can be seen as case of multiplepopu-
lated exceptions. In addition,isolated exceptionsappear if one
writer contributes with very few samples, or he is unstable or
uncomfortable writing on the digitizing pad, or some characters
are badly labeled. By allowing hyperboxes be as large as neces-
sary, but accepting small a training error,ARTMAP generates
such a compact rule set. In addition, since Fuzzy ARTMAP dis-
tributes training samples among several categories,ARTMAP
is a better estimator of the underlying distribution. Thus, it will
be simpler to apply rule pruning by usage frequency [7] to their
rules than to those generated by Fuzzy ARTMAP.

BARTMAP accuracy lies between that of Fuzzy ARTMAP
and ARTMAP, but at the expense of a large number of cate-
gories. This is due to the appearance of manypopulated excep-
tions, as already mentioned. In these high-dimensionality input
spaces, many categories are devoted to describe the surrounding
of thesepopulated exceptions. In fact, BARTMAP performance
degrades as the number of strokes, and thus the dimensionality
of the problem, increases, pointing out the utility of some kind
of inter-ART reset.

VI. CONCLUSION

A new neural architecture calledARTMAP has been intro-
duced as a solution to the category proliferation problem some-
times present in Fuzzy ARTMAP-based architectures. It then
reduces the number of committed categories, while preserving
generalization performance, without changing the geometry of
category representation. Therefore, a compact set of IF-THEN
rules can be easily extracted. This is important for favoring the
use of neural networks in problems where comprehensibility of
decisions is required, or where it is important to gain insight into
the problem through the data.

To achieve this category reduction,ARTMAP intelligently
positions hyperboxes in the input space and optimizes their size.
For this purpose, two different learning stages are considered: in
the first stage an inter-ART reset mechanism is fired if selected
ART category has an entropic prediction. However, ARTvig-
ilance is not raised. In the second stage, total prediction entropy
is evaluated and, if required, some patterns are presented again
with increased ARTvigilance values. This way,ARTMAP al-
lows some training error, avoiding committing categories with
small relevance for generalization and also permits placing hy-
perboxes inside other hyperboxes, to describe efficientlypopu-
lated exceptions, i.e., problems where many patterns associated
to one class label are surrounded by many others associated to
a different one.

Experimental results obtained on synthetic benchmarks show
that an inter-ART reset mechanism is necessary for treating
correctly thesepopulated exceptions. In ARTMAP, vigilance
in ART is not raised after inter-ART reset and therefore this
mechanism does not cause category proliferation, while the
predictive accuracy can be guaranteed by the second learning
stage. Furthermore, some kind of inter-ART reset mechanism
turns out to be more significant in higher dimensionalities,
since otherwise an increasingly large number of categories
will be devoted to describepopulated exceptions. Thus

ARTMAP has been shown to outperform BARTMAP, another
ARTMAP-based approach to reduce category proliferation that
suppresses the inter-ART reset.

In addition, because ARTMAP, as BARTMAP, allows a
small error on the training set, it finds more compact rule sets
when there is overlap between concept classes and therefore
no exact solution. This results generalizes inARTMAP and
BARTMAP being more robust to noise than Fuzzy ARTMAP.

Furthermore, ARTMAP has been tested in a difficult real-
world task, i.e., recognizing upper-case letters written on-line on
a digitizing pad, where the extraction of a reduced set of rules
is very important. Because of the high variability of the data,
patterns are organized as many “clouds” in an input space of
high dimensionality, where many of these clouds are surrounded
by patterns with other labels, i.e.,populated exceptions. In this
situation, ARTMAP significantly reduces the number of gen-
erated rules, to achieve similar performance. In addition, these
rules reflect more reliably the underlying distribution of the data
and thus postprocessing methods could be more efficient. On the
contrary, BARTMAP fails to produce a reduced number of rules
because the lack of an inter-ART reset mechanism becomes crit-
ical in this high-dimensional problem.

Current research pursues modifyingARTMAP to control
category growth on each input feature independently. This is
interesting because the vigilance criterion (4) limits the total
size of the hyperbox, whilea priori knowledge, or the under-
lying distribution, may determine that restriction should be ap-
plied only in some particular direction. By doing this, a smaller
number of categories would be recruited in some problems,
while gaining independence of the order of pattern presentation
and an indirect measure of feature importance could be derived.

In addition, an interesting topic of ongoing research to re-
duce category proliferation concerns the assessment of modified
architectures, such as dARTMAP, BARTMAP or the proposed

ARTMAP, as compared to rule pruning or extraction methods.
In some cases some of the rules generated by Fuzzy ARTMAP
may contribute little to the predictive accuracy and thus could
be removed, yielding a network with a compact set of rules, but
preserving the on-line feature. In [28] we partially address the
study of the computational implications and effectiveness to re-
duce category proliferation of rule pruning methods, while more
extended research is an important issue for future works.
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