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Abstract

A new architecture, called MicroARTMAP, is proposed to impact the category proliferation problem

present in Fuzzy ARTMAP. It handles probabilistic information through the optimization of the mutual

information between the input and output spaces, but allowing a small training error, thus avoiding

over�tting. While reducing the number of categories used by Fuzzy ARTMAP, it holds several desirable

properties, such as a correct treatment of exceptions and a fast algorithm, as opposed to other approaches

like BARTMAP. In addition, it is shown that MicroARTMAP is less sensitive than Fuzzy ARTMAP with

respect to the the pattern presentation order, and that it degrades less if the training set is noisy.
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1 Introduction

Fuzzy ARTMAP [2] is a neural network architecture for conducting a supervised learning in a multidimen-
sional framework. Fuzzy ARTMAP and other ART based networks share some properties that make them
very suitable for applications requiring on-line performance. These properties include the solution of the
stability-plasticity dilemma [5], which allows incremental learning on time-varying environments; fast sta-
ble learning, multiple generalization scales and fast convergence with a relatively small number of training
patterns.

However, Fuzzy ARTMAP su�ers from a category proliferation problem [3], i.e. the training algorithm
recruits a large number of categories to represent the input space and its relations to the output space. Thus
training produces a large rule set, often with redundant information, that will increase the test processing
time. Furthermore, this set of rules may hardly be interpreted by a human supervisor, loosing one of
the most interesting properties of neuro-fuzzy systems. In order to solve this problem, several approaches
have been proposed. On one hand, changes in Fuzzy ARTMAP architecture have been introduced, as in
dARTMAP [3], that may avoid category proliferation while preserving its on-line stable learning property.
However, as shown in [7], dARTMAP is only successful under certain problem conditions. On the other
hand, post-processing methods, like rule pruning [1], can be computationally costly and loose the on-line
feature.

In addition, probabilistic information can be used to improve Fuzzy ARTMAP performance. In PROBART
[6] the inter-ART map is replaced by a probabilistic map, suppressing the match tracking mechanism.
Boosted ARTMAP (BARTMAP) [8] is proposed as a modi�cation of PROBART, that performs an o�-line
evaluation of the training error after the on-line unsupervised clustering of the input space. If the prediction
error on the training set is beyond a threshold, new training is performed with a higher vigilance parameter,
i.e. creating �ner categories. This approach pretends to optimize the size of categories so that its recruitment
is reduced. However, exceptions cannot be handled appropriately, as shown later in this paper. Moreover,
the algorithm can be computationally costly, since clustering of the input space is completely unsupervised.

In this paper, �ARTMAP (read MicroARTMAP, use of Mutual Information for Category Reduction in
ARTMAP) architecture is proposed, that combines probabilistic information in order to reduce the number
of categories by optimizing their sizes, and the use of a match tracking mechanism that will allow the correct
treatment of exceptions, and a fast training algorithm.

The rest of this paper is organized as follows: section 2 presents the new �ARTMAP architecture and
algorithm, pointing out the di�erences with Fuzzy ARTMAP, PROBART and BARTMAP. Due to space
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constraints, the reader is supposed to be familiar with Fuzzy ARTMAP architecture and algorithm. Section
3 is devoted to an experimental comparison of these architectures and the proposed �ARTMAP, through
several synthetic benchmarks. Finally, section 4 draws the main conclusions.

2 �ARTMAP

As stated above, BARTMAP [8] replaces the inter-ART map by a probabilistic map as in PROBART [6].
Furthermore, it endows each category with its own vigilance parameter �ai , instead of a common �a applied
to evaluate matching for all units in ARTa. All �ai are initialized to a (usually relaxed) value, and clustering
of all patterns proceeds, while the probabilistic map will count relations between categories in ARTa and
categories in ARTb. After all patterns have been presented, the total prediction error on the training set is
calculated easily from the probabilistic map weights, and if this error " is beyond a threshold "max, some units
with high contribution to the error are deleted, the base �ai raised and the training patterns are presented
again. However, this does not permit to treat exceptions correctly. To see this, consider task 4 in �gure
1. Since BARTMAP has not a match tracking mechanism, categories within other categories will not be
created, and therefore one category will code all patterns in the inner square, while several categories will
be necessary to code the rest of the patterns. On the other hand, training Fuzzy ARTMAP with �a = 0 and
an adequate pattern presentation order, will produce only two categories: one for the whole outer square,
and other for the exception inner square. Moreover, in Fuzzy ARTMAP will require a single training epochs
while several will be necessary to achieve acceptable results with BARTMAP.

The proposed �ARTMAP attempts to reduce the number of recruited neurons in Fuzzy ARTMAP by
adaptively selecting �ai vigilance parameter for each category, and also maintain the training error under
a threshold as BARTMAP does. However, it incorporates a reset mechanism that will allow to handle
exceptions properly, and reduce the number of training epochs. To achieve this, the conditional entropy H

between ARTb and ARTa categories is veri�ed to be under a threshold Hmax after the presentation of all
patterns, but also the contribution hi to H is compared after each pattern presentation to a threshold hmax,
eventually �ring the reset mechanism. The minimization of H is shown to be equivalent to the maximization
of the mutual information between ARTa and ARTb categories, hence the name �ARTMAP. The complete
training algorithm is explained in detail in section 2.2.

2.1 De�nitions

Given partitions of the input space I into sets Ii (not necessarily connected) and output space O into sets
Oi, the conditional entropy H(O j I), here denoted simply by H , is given by

H =
X

i

pi
X

j

pij log2 pij (1)

where pi is the probability of occurrence of class Ii and pij is the joint probability of classes Ii and Oj . Let
us denote

hi = pi
X

j

pij log2 pij (2)

the contribution to H of set Ii.
It is important to remark that the mutual information (MI) between input and output spaces is given

by MI(O; I) = H(O) �H(O j I), where H(O) is the entropy for the output space. Therefore, for a given
H(O) (as in classi�cation tasks), minimizing the conditional entropy is equivalent to the maximization of
the mutual information.

2.2 The architecture

The structure of �ARTMAP architecture is similar that of Fuzzy ARTMAP, consisting of two unsupervised
Fuzzy ART modules (ARTa and ARTb clustering the input and output spaces, respectively) and an asso-
ciative map (inter-ART) storing relations between the unsupervised modules. The following changes are
introduced:
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Fuzzy ARTMAP PROBART BARTMAP �ARTMAP

inter-ART competitive map probabilistic map
vigilance �a for ARTa �ai for each unit i in ARTa
On-line reset if wrong prediction
for unit i unit i is inhibited nothing

if hi > hmax

in ARTa and �a is raised
unit i is inhibited

if " > "max unit with if H > Hmax unit with
O�-line

nothing greater "i deleted and greater hi deleted and
check

�ai raised for new units �ai raised for new units
Suitable for
classi�cation

Yes No Yes

Treatment
of exceptions

Correct Not correct Correct

Control
training error

No Yes

Table 1: Important features in Fuzzy ARTMAP, PROBART, BARTMAP and �ARTMAP.

� Each unit in ARTa has its own vigilance parameter �ai , as in Boosted ARTMAP.

� The inter-ART map is a probabilistic map that stores joint probabilities pij (on-line) and Pij (o�-line),
for units i in ARTa and j in ARTb. PROBART and BARTMAP also store pij weights.

� Two user-tuned parameters are introduced: hmax sets an upper limit to the contribution hi (see eq.
2) of each unit i, calculated on-line; meanwhile, Hmax sets an upper limit to the total entropy (see eq.
1), calculated o�-line. In Boosted ARTMAP a user-tuned parameter "max imposes a limit to the �nal
prediction error.

The algorithm for �ARTMAP is as follows:

1. The probabilistic map is initialized with pij = Pij = 0 for all i; j. The Fuzzy ART modules are
initialized with wa

ij = wb
ij = 1. In addition hi = Hi = 0 for all i.

2. On-line stage: For every pattern in the training set:

(a) The pattern is presented, and according to Fuzzy ART algorithm [1] unit i wins in ARTa, while
unit j wins in ARTb. If a new unit i is recruited in ARTa, its �ai is set to �a.

(b) The probability weights pij are tentatively updated.

(c) The contribution to entropy of unit i is calculated, according to eq. (2), and compared to hmax.
If

� hi > hmax, then the unit i in Fuzzy ARTa is inhibited, changes in step 2b are revoked and
the pattern is presented again (step 2a).

� hi � hmax, then ARTa weights are updated according to [1], and the next pattern is processed.

3. O�-line stage: If Hmax � log
2
N b, where N b is the number of output classes, then this stage is not

necessary, and therefore training keeps being on-line. Otherwise, for every pattern in the training set:

(a) The pattern is presented, and according to Fuzzy ART algorithm [1] unit i0 wins in ARTa, and
unit j in ARTb. The i0 could be di�erent from the i unit selected for this training pattern in the
on-line stage.

(b) The values of Pi0 and Pi0j are updated.

4. The values of hi are calculated for all i, and also the value of H , using probabilities Pi and Pij . If
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Task 1 Task 2

Task 3 Task 4 Task 5 Task 6

Figure 1: Synthetic benchmarks proposed to compare Fuzzy ARTMAP, BARTMAP and �ARTMAP. Tasks
1 and 2 are one-dimensional problems, while tasks 3, 4, 5 and 6 are two-dimensional problems. In all cases
there are two output classes.

� H > Hmax, then the unit i with maximal contribution hi to H is deleted. All the patterns
classi�ed in this unit are marked for newer presentation (again step 2), and the value of �a is set
by �a = �ai +��.

� H � Hmax the training ends.

We can consider Fuzzy ARTMAP, PROBART and BARTMAP special cases of �ARTMAP. If hmax = 0
and Hmax � log

2
N b, then �ARTMAP is similar to Fuzzy ARTMAP, except for the important fact that

Fuzzy ARTMAP match tracking mechanism raises �a temporarily, allowing the creation of �ner categories [2].
The creation of �ner categories is supplied in �ARTMAP by the o�-line stage, but unlike Fuzzy ARTMAP, it
only is performed if necessary, as shown in section 3. In addition, if hmax; Hmax � log

2
N b then �ARTMAP

is totally equivalent to PROBART. Finally, if Hmax is expressed as a function of "max and hmax � log
2
N b,

then the proposed system is equivalent to BARTMAP. Table 1 summarizes the main features of the systems
under study.

3 Experimental results

In order to evaluate the performance of the proposed architecture, several benchmarks are considered, as
shown in �gure 1. Task 1 and task 2 try to evaluate the optimization of the number of categories in
one-dimensional problems. These tasks can be seen as identifying a large white class, with several gray
exceptions. Task 3 proposes a similar task in a two-dimensional space. Task 4 shows a simple example of
exception treatment that cannot be solved with two single categories by BARTMAP. Task 5, known as the
circle in the square, is studied in [3], where distributed learning is proposed to reduce category proliferation
in Fuzzy ARTMAP. Tasks 1 through 4 can be seen as di�erent generalizations of the circle in the square

problem, which is very used in ARTMAP literature [2, 3].
Finally task 6 is proposed in the original BARTMAP paper [8], consisting of two normally distributed

classes with means (8; 12) and (12; 8) respectively, and variance 2, in order to test how BARTMAP optimize
the number of categories by allowing a small training error. The inuence of noise in the training set is also
studied in task8, consisting on the same classi�cation problem in task 4, with Gaussian noise added to the
input patterns.

For all the experiments shown in table 2, ten sets of 1000 training patterns were generated from an
uniform distribution in the input space (except in task 6), while a single set of 10000 patterns was used
for test. In task 6 input data were normalized to [0; 1] as required by the Fuzzy ART modules of the three
architectures. All processing times were measured in a 120MHz Pentium PC, with all the architectures
implemented as dlls for MATLAB, using MATLAB's clock and etime.

Experimental results in table 2 show that �ARTMAP performs optimally in the number of generated
categories for tasks 1 and 2. Fuzzy ARTMAP is highly dependent on pattern presentation order to achieve
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Task Architecture hmax Hmax "max �� Na ttrain(s) "test

Fuzzy ARTMAP | | | | 13.2 0.07 0.73%
Task 1 BARTMAP | | 0.1 0.1 21.4 0.45 9.37%

�ARTMAP 0.0 0.1 | 0.1 6.0 0.38 0.60%

Fuzzy ARTMAP | | | | 6.6 0.04 0.41%

Task 2 BARTMAP | | 0.1 0.1 5.9 0.37 8.74%
�ARTMAP 0.0 0.1 | 0.1 3.0 0.19 1.16%

Fuzzy ARTMAP | | | | 37.3 0.31 8.05%
Task 3 BARTMAP | | 0.1 0.05 81.5 1.27 14.08%

�ARTMAP 0.0 0.1 | 0.05 10.8 2.14 6.19%

Fuzzy ARTMAP | | | | 6.7 0.06 0.71%
Task 4 BARTMAP | | 0.1 0.05 12.0 0.44 11.86%

�ARTMAP 0.0 0.1 | 0.1 2.0 0.03 0.30%

Fuzzy ARTMAP | | | | 24.3 0.27 5.37%

BARTMAP | | 0.1 0.05 25.1 0.60 12.64%
Task 5

dARTMAPy | | | | 16.0 | 6.80%
�ARTMAP 0.0 0.2 | 0.1 7.1 0.40 6.16%

Fuzzy ARTMAP | | | | 21.7 0.17 4.16%

Task 6 BARTMAP | | 0.25 0.1 2.7 0.67 11.03%
�ARTMAP 0.0 0.1 | 0.05 7.5 0.6 4.32%

Fuzzy ARTMAP | | | | 16.7 0.17 2.79%
Task 7 BARTMAP | | 0.1 0.05 12.6 0.40 10.51%

�ARTMAP 0.1 0.2 | 0.05 3.3 0.18 2.10%

Table 2: Experimental results for the benchmarks shown in �gure 1. Task 7 consists in the same classi�cation
problem of task 4 with Gaussian noise added to the input patterns. All experiments were carried out on ten
di�erent training sets of 1000 patterns, and the same test set of 10000 patterns (except y: results from [3]).
In all networks �a = 0:0 and �a = 1:0.

optimal category recruitment [4], and therefore a larger number of categories is required in average. In
addition, BARTMAP shows unsuitable for problems with very probable exceptions, due to the lack of an
inter-ART reset mechanism. Training times are small for these problems, although it is clear that Fuzzy
ARTMAP has the fastest algorithm. These results can be extended to two-dimensional cases, as shown by
task 3. Here, �ARTMAP does not reach an optimal solution in all the cases, since it also depends on the
pattern presentation order as other ART based architectures.

In task 4, Fuzzy ARTMAP produces a number of redundant categories in the white region, due to the
fact that it raises �a after an inter-ART reset is produced. Instead, in �ARTMAP �a is raised in the o�-line
stage, and therefore it can be avoided when it is unnecessary, like in this task, where an optimal number
of categories is found. Therefore, we can �nd as an emergent propierty that �ARTMAP is less sensitive to
pattern presentation order than Fuzzy ARTMAP. In this task, BARTMAP again fails to treat the single but
very probable exception correctly, producing a large number of categories and a high test error.

Task 5, the circle in the square problem, is studied in [3], where distributed learning is proposed to reduce
category commitment in Fuzzy ARTMAP. In [3] Distributed ARTMAP is reported to use 16 categories to
produce 6.8% test error, when trained on a 1000 pattern training set. As seen in table 2, �ARTMAP uses
a reduced number of categories with higher test accuracy, by adequately positioning the categories, and
allowing some error in the borders between classes. Both Fuzzy ARTMAP and BARTMAP used a much
larger number of categories.

In [8] task 6 is proposed to show that BARTMAP can �nd a small set of categories that correctly classify
points from two overlapping gaussians. The overlap region is not very probable, and since a small training
error is allowed, just a few categories will be committed to code it. However, the experiments show that
the test error is much higher than that of Fuzzy ARTMAP. �ARTMAP also allows a small train entropy
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(and therefore error), thus using a reduced number of categories, but achieving similar accuracy to Fuzzy
ARTMAP. Fuzzy ARTMAP does not treat probabilistic information, and therefore will dedicate several
categories to map the overlap. This result indicates that Fuzzy ARTMAP will degrade more in a noisy
environment than BARTMAP or �ARTMAP. To test this fact, task 7 is proposed, consisting in the same
classi�cation problem of task 4, with Gaussian noise (� = 0:01) added to the input patterns. In table 2 it can
be seen that the number of categories used by Fuzzy ARTMAP doubles, while BARTMAP and �ARTMAP
su�er a much smaller increase in complexity.

4 Conclusions

A new ARTMAP arcuitecture, called �ARTMAP, has been proposed to impact the category proliferation
problem present in Fuzzy ARTMAP. It handles propobabilistic information through the optimization of the
mutual information between the clustering made on the input and output spaces. This optimization leads to
a reduction in the training error, although a small error in the training set can be allowed, as in BARTMAP,
thus avoiding data over�tting. However, whilst BARTMAP performs a totally o�-line optimization of the
training error, �ARTMAP includes an on-line inter-ART reset mechanism, achieving fast convergence and
correct treatment of populated exceptions.

After conducting the experiments it can be concluded that �ARTMAP produces a much smaller number
of categories than Fuzzy ARTMAP, at the cost of a higher processing time. In addtion, it has been seen
that �ARTMAP is less sensitive than Fuzzy ARTMAP with respect to the pattern presentation order.
�ARTMAP also outperforms BARTMAP in problems with well de�ned sollution that require the treatment
of probable exceptions, while in problems where class overlapping exists with low probability �ARTMAP
performs similarly. Moreover, �ARTMAP is computationally more e�cient than BARTMAP.

In addition, it has been shown that in the realistic case of training data being corrupted by noise, Fuzzy
ARTMAP degrades much more than BARTMAP and �ARTMAP.
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