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ABSTRACT 

ARTMAP based architectures have several desirable properties 
that make them very suitable for pattern classification problems. 
However, they suffer from category proliferation. Distributed 
coding has been proposed as a solution for memory 
compression. dARTMAP neural network has been introduced as 
a modification of Fuzzy ARTMAP that, due to distributed 
learning, achieves code compression while fast stable learning is 
retained. A critical analysis of dARTMAP architecture and 
performance in pattern recognition problems is presented here, 
concluding that distributed learning excels the original Fuzzy 
ARTMAP only under certain geometrical configurations of the 
output classes, or in the presence of noise in the training set. A 
new architecture called dFasArt is presented here, introducing 
distributed learning into FasArt neuro-fuzzy system, which is 
more suitable for identification tasks, showing that the 
advantages of distributed code can be extended to other neural 
architectures. Experimental results show dFasArt performs 
similarly to dARTMAP in classification tasks, while being less 
sensitive to pattern presentation order. 

1. INTRODUCTION 

Since Adaptive Resonance Theory (ART) was first introduced 
by Grossberg [12], several neural architectures have been 
proposed within the ART family featuring fast on-line, stable 
learning and also allowing incremental learning (on-line 
adaptation) [S]. These architectures are specially designed for 
pattern recognition and multidimensional mapping tasks [5]. 
Furthermore, all ART networks share a set of basic properties 
that makes them suitable for non-stationary environments and 
real time applications. These properties include fast learning for 
exceptional cases, which reduces processing time; dynamic 
neuron commitment, which is carried out without network 
disruption; and few training epochs to reach acceptable levels 
of predictive accuracy. 

Within ART family of neural networks, ARTMAP is an 
architecture that performs supervised multidimensional mapping 
in response to input/output vector pairs presented in arbitrary 
order [5]. ARTMAP consists of two self-organizing ART 
modules linked by a layer of nodes called inter-ART map field. 
The two ART modules cluster input and output spaces into 
categories, while the map field forms predictive associations 
between these categories. 

Fuzzy Logic was formally introduced in Zadeh seminal paper 
[17], and has since then been used in many classification and 
mapping tasks [16] because it provides a knowledge 
representation close to linguistic description, thus allowing to 
express knowledge in the form of understandable IF-THEN 
rules. However, when expert knowledge cannot be easily 
transformed into rules, it becomes necessary to develop 
mechanisms in order to generate these rules from available data. 
In this sense, neural networks provide a means to automatic 
construction of the fuzzy rule set due to their self-organizing 
properties. Several neuro-fuzzy systems have been proposed in 
the literature, and successfully applied to different engineering 
problems [ll] [14] [15]. 

Fuzzy ARTMAP [6] is a modification of ARTMAP architecture 
that introduces some basic principles of fuzzy logic. However, 
the main motivation of this change was to allow ARTMAP 
architecture to work with analog input patterns. In this sense, 
although Fuzzy ARTMAP could be used for the automatic 
construction of neuro-fuzzy systems by transforming the 
relations between input and output patterns stored in the inter- 
ART map field into IF-THEN rules, it is difficult to interpret 
these rules in fuzzy terms. 

To overcome this ambiguity, FasArt neuro-fuzzy system was 
proposed [2], introducing fuzzy logic in a formal way into Fuzzy 
ARTMAP architecture, by establishing a duality between 
categories and fuzzy sets. This is achieved by setting the 
activation function of a given neuron dual to the membership 
function of an associated fuzzy set. This feature, in addition to 
the fact that it performs defuzzification in the output, FasArt has 
been successfully tested on identification and control tasks [ 11. 

However, all ART based systems present a category proliferation 
problem, especially in noisy environments, due to fast learning 
and Winner-Take-All (WTA) coding. Category proliferation 
becomes a major problem when the aim of the neural network is 
to construct a set of rules for a fuzzy system, since it involves 
massive rule generation. This will result into an increase in the 
processing time of the fuzzy system without noticeable 
improvement of its predictive accuracy, since most extra rules 
are redundant. Moreover, such a complex rule set may turn out 
to be impractical in applications where a human operator should 
supervise the actions of the fuzzy system. Postprocessing 
methods for rule merging and reduction of redundancy have 
been proposed in the literature, although they loose the on-line 
feature [lo]. In comparison to ART networks, other architectures 
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such as backpropagation trained perceptrons [13] employ fewer 
neurons, resulting in more compact code. Nevertheless, training 
these architectures is very slow and a great number of training 
epochs is necessary. Furthermore, they are not compliant to the 
stability-plasticity dilemma [12], and thus presentation of new 
training patterns may cause catastrophic forgetting of previous 
knowledge. Moreover, information present in the perceptron 
weights can hardly be transformed into fuzzy rules. These 
features make backpropagation networks unwieldy for on-line 
generation of fuzzy systems. 

Recently, distributed coding has been proposed as a means to 
avoid massive commitment of neurons in ART architectures [3]. 
Prior to this work, several ARTMAP based neural networks such 
as ART-EMAP [9], ARTMAP-IC [7] and FasArt were proposed 
that take advantage of distributed code in test mode, but retain 
WTA code during learning. In [8], distributed ARTMAP 
(dARTMAP) is introduced as a Fuzzy ARTMAP based 
architecture that includes distributed code both for learning and 
test stages in pattern recognition problems. The new architecture 
inherits fast stable learning from Fuzzy ARTMAP and achieves 
code compression without significant reduction of predictive 
accuracy. 

This paper makes a critical analysis of dARTMAP in order to 
extract qualitative conclusions about the advantages and 
limitations of distributed learning in ARTMAP based neural 
networks. A distributed version of FasArt is proposed to study 
the usability of the innovations introduced in dARTMAP 
algorithm into other ARTMAP based architectures. 

The rest of this paper is organized as follows. Section 2 starts 
with a review of the innovations introduced in dARTMAP 
architecture. Afterwards, dARTMAP and Fuzzy ARTMAP 
performances are compared in several pattern recognition toy 
problems in order to determine the kind of problems in which 
distributed code outperforms WTA. These benchmarks include 
diverse geometric outlines and presence of noise in the training 
set. Section 3 is devoted to study the adaptability of distributed 
code features to other ARTMAP based architectures, in 
particular to FasArt. The section presents a brief review of 
FasArt architecture and introduces dFasArt, a distributed version 
of FasArt suited for pattern recognition problems. FasArt and 
dFasArt performances are compared in order to evaluate if 
distributed code advantages are extendable to other ARTMAP 
based neural networks. Finally, conclusions and future work are 
summarized in section 4. 

Due to space constrains, this paper is not self contained, and 
therefore the reader is supposed to be familiar with Fuzzy 
ARTMAP architecture. 

2. CRITICAL REVIEW OF dARTMAP 

The dARTMAP architecture [S] has been derived from Fuzzy 
ARTMAP to perform distributed learning and testing, instead of 
the original WTA processes implemented in Fuzzy ARTMAP. In 
Fuzzy ARTMAP, when a pattern is presented to a Fuzzy ART 
module, competitive activation takes place among its nodes. At 
the end of the competition only one node will remain active, and 
then resonance is said to occur. This winner node will code the 
pattern solely. In a distributed ART, after the competition several 
nodes remain activated, and then they will code the pattern in 
proportion to their relative activation. 

However, distributed learning causes catastrophic forgetting if it 
is implemented in the original Fuzzy ARTMAP architecture. To 
introduce distributed learning while retaining stable fast 
learning, some innovations have been introduced in Fuzzy 

ARTMAP architecture to result in dARTMAP. These 
innovations include dynamic weights, a new content-addressable 
memory rule, instance counting, credit assignment and 
distributed learning laws. The following subsection is devoted to 
briefly explain these new features. 

2.1 Analysis of the innovations introduced in dARTMAP 
First of all, it must be clarified that dARTMAP is not a fully 
distributed system, but a hybrid distributed-WTA. When a 
pattern is presented, dARTMAP attempts to code it in distributed 
mode. If this code produces a correct prediction of the pattern, 
distributed learning proceeds. However, if the prediction is 
incorrect, the network switches to WTA mode and its operation 
is exactly that of Fuzzy ARTMAP. This switching to WTA is 
due to the lack of an efficient distributed inhibition method, i. e. 
a mechanism that penalizes the nodes responsible of the 
incorrect prediction without disrupting the stability of the 
learning process. 

Dynamic weights: Fuzzy ARTMAP Long Term Memory 
(LTM) weights are replaced by dynamic weights. Dynamic 
weights are a function of both LTM, represented by an activation 
threshold and Short Term Memory (STM), represented by the 
node current activation. 

Geometrically, each node in Fuzzy ARTMAP has an associated 
hyperbox whose vertices are given by the weights. In 
dARTMAP, hyperboxes have a LTM part given by the 
previously learnt patterns, and a STM part given by the current 
pattern and the activation of other nodes present in the 
competition. The LTM part of the hyperbox equals Fuzzy 
ARTMAP hyperbox, and is only modified when resonance 
occurs, while the STM part is an enlargement of the LTM 
hyperbox that is calculated for each particular input pattern. 

New content-addressable memory rule: Fuzzy ARTMAP 
Content-Addressable Memory (CAM) rule features WTA 
coding, and therefore a new CAM rule is necessary in order to 
provide distributed coding. In dARTMAP, node activation by 
patterns is performed in two stages. First, every node is activated 
like in Fuzzy ARTMAP, using only the LTM part of the 
hyperbox. Then, the CAM rule carries out a competition among 
the nodes. As a result of this competition, each node steady state 
activation will be a fraction of its WTA activation. Therefore, 
after the competition several nodes remain activated, and they 
will code the pattern in a distributed way. 

Instance counting: Every node keeps count of the patterns that 
has coded. Steady state node activation is weighted by this 
instance counting. This procedure is necessary because of the 
method used in dARTMAP to make distributed prediction for 
the output class. To find out the prediction, dARTMAP adds up 
the activation of all the nodes associated to each output class and 
predicts the one that has reached a higher sum value. Instance 
counting is introduced due to the fact that, if each node means 
one addend for the prediction sum, an output class represented 
by few nodes with each node coding many instances would be 
easily overcome by another output class represented by many 
nodes with each node coding few instances. Therefore, instance 
counting helps balance this effect. 

Credit assignment: After a correct output class prediction, and 
if dARTMAP is in distributed mode, credit assignment takes 
place before the actual learning of the weights. Due to 
distributed activation, some minority nodes may remain 
activated though they lead to wrong output classes. Credit 
assignment inhibits these nodes ensuring that only those that 
have contributed to the correct output class will modify their 
weights to learn the new pattern. 
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Distributed learning laws: Distributed learning is made 
according to distributed instar and outstar learning laws [3] [4]. 
These laws allow changes in the LTM part of dynamic weights 
only when the steady state size of the coding hyperbox does not 
already include the new pattern. Unlike Fuzzy ARTMAP, 
dARTMAP weights are only modified when it is absolutely 
necessary for the correct coding of the pattern. Distributed 
learning laws endow dARTMAP with stability and avoid 
catastrophic forgetting. 

2.2 Test of dARTMAP performance 
Fuzzy ARTMAP and dARTMAP have been programmed on a 
sequential machine in order to compare their relative 
performances. These architectures have been tested in six pattern 
recognition benchmarks and results are discussed here focusing 
on the number of nodes recruited by each architecture and their 
accuracy (correct classification rate), and the standard deviation 
of both measurements. To extract conclusions about the 
influence of geometry, order of pattern presentation and presence 
of noise, several parameters were considered to design the 
benchmarks: 

a) Number of output classes. 

b) Probability of occurrence of each output class. 

c) Geometric shape of the output classes. 

d) Convexity of the geometric region associated to each output 
class. A region is convex if every two points within can be linked 
with a straight segment that does not run through another 
different class region. 

The proposed tasks are described bellow, and schematic designs 
are shown in figure 1. 

task 1 task 2 task 3 

task 4 task 5 task 6 

Figure 1 Schematic designs of the benchmarks. 
Different colors mean different output classes. 

Task 1 consists in separating the points in the unit square that lie 
within a circle placed in the center of the square. The area of 
each class is l/2. This task known as circle in the square is used 
in [8]. Task 2 is the same as task 1 but with the circle being of 
area l/3. 

Task 3 consists in classifying the points in a unit square that lie 
within four different circles. Each of them is centered in one of 
the four quadrants of the square, and has an area of l/5. Tasks 4 
and 5 are similar to tasks 1 and 3, but with squares instead of 
circles inside the unit square. 

Task 6 consists in classifying the points in a unit square that lie 
within any of five concentric rings placed in the center of the 
square. All rings have the same area. 

Results of the performance of Fuzzy ARTMAF and dARTMAP 
on these benchmarks are shown in table 1. These results average 

100 simulations with 2000 patterns in the training set and 5000 
patterns in the test set. To study the influence of the order of 
pattern presentation, the different training sets were formed by 
randomly reordering the same 2000 patterns. All training and 
test patterns are points generated randomly in the unit square. 

Table 1 Performance results of Fuzzv ARTMAF and dARTMAP 
in the six benchmarks. 

T-5 1 32.64k7.24 1 96.13& 1.34 131.20f10.52 1 95.57k1.28 
T-6 1 116.90+8.25 1 83.97+ 1.32 1 119.30+13.4 1 80.30f10.32 

Influence of geometry: Results in table 1 can be useful to 
conclude in which cases the innovations introduced in section 
2.1 will allow dARTMAP outperform Fuzzy ARTMAF. This 
improvement is dependent on several conditions discussed 
below. 

a) Probability of each class: Tasks 1 and 2 share the same 
geometry but in task 2 the class inside the circle is less probable 
than the class outside, since it is only populated by l/3 of the 
patterns in the unit square. While dARTMAP achieves code 
compression in both tasks, in task 2 correct classification rate 
falls 13% with respect to Fuzzy ARTMAF. The nodes associated 
to the more probable classes will code more patterns in the 
training set than those associated to less probable classes. Thus, 
due to instance counting, distributed prediction is biased towards 
more probable classes. During supervised training, this bias is 
controlled by switching to WTA after mismatches. However, 
during test, this bias increases prediction error rate in less 
probable classes, and thus dARTMAP accuracy decreases. 

b) Geometric shape of the output class: Benchmarks 4 and 5 are 
similar to 1 and 3 but with different geometric shapes. In can be 
seen that dARTMAP does not achieve code compression in the 
tasks with rectangular shapes. Fuzzy ARTMAF two-dimensional 
nodes are geometrically equivalent to rectangles that learn a new 
pattern by enlarging their sides to include it. Thus, Fuzzy 
ARTMAP coding hyperboxes Iit perfectly to rectangular output 
classes, and therefore dARTMAP coding hyperboxes can not 
reach a better code compression, while distributed code may 
decrease accuracy. 

However, in non-rectangular shape cases like those proposed in 
tasks 1 and 3, Fuzzy ARTMAF must cover all the area inside the 
circles with rectangles associated to the inside classes. Along the 
borders, these rectangles will also cover patterns outside the 
circles, which will have to be covered in turn with smaller 
rectangles leading to the correct output. Distributed coding boxes 
do not need to cover all their coded patterns due to distributed 
learning laws. Therefore, those extra nodes associated to the 
smaller rectangles near the borders are not recruited. It can be 
concluded that distributed coding is not an advantage when 
output classes have rectangular shapes, but otherwise it reduces 
the number of nodes placed in the borders between classes, thus 
reducing the total number of nodes. 

c) Convexity of the regions: Tasks 3 and 6 consist of many 
output classes with non-rectangular shapes. In task 3 these 
classes are convex, but not in task 6. Results show that 
dARTMAP code reduction is achieved only if output classes are 
convex regions. Due to distributed CAM rule, several nodes 
remain activated after the competition. In the case of convex 
regions, like circles in task 3, the most activated nodes 
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correspond to the same output class inside the circle, and 
therefore distributed prediction will be correct. However, when a 
pattern lies inside a ring in task 6, the most activated node will 
correctly predict inside the ring, but the following modes in 
order of activation will predict the adjacent rings, since they are 
nearer to the pattern than other nodes of its ring at the opposite 
side of the center. This reason makes the network behave in a 
WTA-like mode and cancels distributed code advantage. 

d) Number of output classes: Benchmarks results show that the 
number of output classes has no influence on distributed code 
node number reduction, since in both tasks 1 and 3 code 
compression is achieved in spite of their different number of 
classes. Furthermore, in both tasks 4 and 6, which also have a 
different number of classes, there is not a code reduction. 

It can be concluded of these experiments that, in pattern 
recognition problems, distributed code reduces the number of 
nodes recruited by a Fuzzy ARTMAP network when classes are 
equally probable, they have associated geometric regions that are 
convex and with non-rectangular shapes. 

Influence of pattern presentation order: Standard deviation 
values for the number of nodes and achieved accuracy through 
all six tasks are also shown in table 1. Higher values for 
dARTMAP show that this architecture is more sensitive to 
variations in the order of pattern presentation. 

Performance in noisy environments: Tasks 3 and 5 were also 
carried out introducing Gaussian noise with 0 mean and 0.05 
standard deviation in the training set. As seen above, task 3 
poses a problem more suitable for distributed code, while task 5 
is more suitable for the original Fuzzy ARTMAP. 

Table 2 Performance results in noisy environments 
Fuzzy ARTMAP dARTMAP 

Nodes Accuracy Nodes Accuracy 
T-3 130.96 76.77% 88.19 81.34% 
T-5 112 69.36% 63.3 1 70.49% 

Results in table 2 show that dARTMAP outperforms Fuzzy 
ARTMAP in both code compression and accuracy, even in task 
5. In this task noise has blurred the shape of the rectangles, 
canceling Fuzzy ARTMAP geometric advantage. Under noisy 
conditions, dARTMAP is more reliable because its prediction is 
based on the average of several nodes, while Fuzzy ARTMAP 
only takes into account one node. 

3. ADAPTABILITY OF DISTRIBUTED CODE TO FasArt 

FasArt [2] was proposed as a modification of ARTMAP that 
introduced formally fuzzy logic, and therefore FasArt is 
especially suitable for the implementation of fuzzy controllers. 
Thus, code compression becomes a crucial feature in FasArt 
design. In section 2.2 it has been shown that distributed coding 
reduces the number of nodes committed by Fuzzy ARTMAP in 
certain pattern recognition problems. This section is devoted to 
study the adaptation of the new features found in dARTMAP to 
FasArt, and to check if distributed code advantages will 
reproduce in a FasArt based architecture. 

3.1 Brief review of FasArt 
FasArt combines the basic features of Fuzzy ARTMAP with 
fuzzy logic theory introduced in a formal way [2]. FasArt 
establishes a duality between categories and fuzzy sets, by 
associating the activation function of each neuron to a fuzzy 
membership function. Due to this duality, the universal 
approximation principle obtained for fuzzy systems [ 161 can also 
be applied to FasArt, as it has been successfully tested in several 

identification problems [I]. Furthermore, the fuzzy feature 
present in FasArt allows representing the knowledge learnt from 
training patterns in the form of understandable fuzzy IF-THEN 
rules. However, its ARTMAP nature and WTA coding cause 
category proliferation, resulting in redundant fuzzy rules 
generation. 

As previously mentioned, FasArt replaces Fuzzy ARTMAP 
activation rule with triangular fuzzy membership functions. This 
design choice allows calculating a confidence value for FasArt 
predictions. While in Fuzzy ARTMAP all patterns coded by one 
node give the same activation value, in FasArt patterns coded by 
one node produce different activation depending on the distance 
to its membership function center. 

Figure 2 FasArt fuzzy set and membership function for a 
one-dimensional case, where ya is the activation for the 

pattern A. 

For the construction of such triangular membership functions, 
two new features are introduced in FasArt architecture: a weights 
vector C, that represents the center of the fuzzy membership 
function; and a user defined parameter y, that determines what 
region of the input space is allowed to be learn by a node in the 
current pattern presentation. The maximum size of the fuzzy 
support is also restricted by a vigilance parameter, p, that has the 
same function as in Fuzzy ARTMAP algorithm. Weights in C 
are modified when resonance occurs according to a learning law 
similar to that applied in Fuzzy ARTMAP to weights W. 
Therefore, after training C is the prototype of the patterns coded 
by that node. In figure 2 a FasArt fuzzy membership function is 
displayed for one dimensional case, where C and y are the newly 
introduced features, while weights W and WC play he same role 
as in Fuzzy ARTMAP. 

3.2 Introduction of distributed learning in FasArt 
Although FasArt features distributed test, it performs WTA 
coding in training stage. To extend the advantages of distributed 
learning to FasArt, a new architecture called dFasArt is proposed 
here. Although the final goal of dFasArt will be function 
identification, as a first step this paper is devoted to check out if 
the advantages that dARTMAP presents over Fuzzy ARTMAP 
in pattern recognition problems stand for dFasArt over FasArt. 
In this sense, dFasArt incorporates the new features found in 
dARTMAP that have been properly adapted for FasArt 
architecture as explained below. 

In analogy to dARTMAP coding hyperboxes, dFasArt fuzzy 
supports consist of a LTM part that is equivalent to FasArt 
support, and a STM part that depends on the current pattern 
presented and the competitive activation of other nodes. 

In addition, a new CAM rule has been developed for dFasArt in 
order to combine distributed activation with triangular fuzzy 

II-444 



membership functions. In figure 3 the construction of dFasArt 
fuzzy support is shown, where weights W and C determine the 
LTM part of the support. The STM part is added at the side of 
the fuzzy support nearest to the input pattern. When a pattern is 
presented, all the nodes lengthen their supports towards it until 
their sides reach their maximum length, which is taken as 1 since 
the input space is the unit square. At this stage, membership 
function is evaluated on this support. If the pattern is included in 
the LTM part if the support (like pattern B in figure 3), the 
current activation of the node becomes its steady state activation. 
Otherwise (like pattern A), the activation is normalized with the 

A WC B l-WC 

LTM part 

maximumsize 

maximumsize 

Figure 3 Construction of dFasArt fuzzy support and 
membership function. 

activation of all other nodes. The thick line in figure 3 represents 
those activation values that will not be normalized because they 
correspond to patterns inside the LTM support. 

Instance counting before output class prediction, switching to 
WTA after incorrect prediction and credit assignment before 
the resonance state are implemented on dFasArt according to the 
same design criteria stated for dARTMAP. 

Distributed learning laws developed for dARTMAP have 
failed to tit dFasArt algorithm because special treatment for 
weight vector C is required. Instead, FasArt learning laws are 
implemented using as learning rate for each node its steady state 
activation. This implies that patterns close to the support will be 
learned faster than those further apart. 

3.3 Test of dFasArt performance 
As stated before, FasArt is suited to function identification 
problems. Triangular membership function performs better than 
Fuzzy ARTMAP activation function when inputs are samples of 
a continuous function rather than patterns to be classified in 
discrete output classes. Thus, the aim of this paper is not to 
propose dFasArt as a substitute for dARTMAP, but to proof that 
FasArt can take advantage of distributed coding in pattern 
recognition problems in order to eventually extend these results 
to function identification problems. 

As done previously with dARTMAP, the influence of geometry, 
order of pattern presentation and presence of noise are studied. 

Table 3 Performance of FasArt vs. dFasArt 
FasArt dFasArt 

Nodes Accuracy Nodes Accuracy 
T-l 62.04k9.77 93.34* 3.07 14.22+2.84 91.33U.46 
T-3 92.16k35.39 88.94f2.24 43.12& 6.72 85.1Okl.10 

Influence of geometry: In section 2 it was revealed that 
distributed code only achieves code compression in classification 
problems with equally probable classes that are associated to 
convex geometric regions and with non-rectangular shapes. 
Tasks 1 and 3 of figure 1 are examples of such problems, and 
therefore FasArt and dFasArt performances have been tested on 
these two benchmarks to check if distributed code was also 
advantageous to FasArt based architectures. Results in table 3 
show that dFasArt achieves code compression in those cases 
where dARTMAP did. Comparison of tables 1 and 3 show that 
dFasArt performance is comparable to those of Fuzzy ARTMAP 
and dARTMAP. Thus distributed coding turns out helpful to suit 
FasArt to pattern recognition tasks. 

Influence of presentation order: dFasArt is less sensitive to 
presentation order than FasArt, since table 3 standard deviation 
values are higher for the latter. Comparison of tables 1 and 3 
show that dFasArt is even less sensitive than dARTMAP to 
presentation order. 

Performance in noisy environments: Tasks 3 and 5 were also 
carried out with FasArt and dFasArt including Gaussian noise as 
described before. Table 2 showed that distributed learning 
achieves higher code compression in the presence of noisy using 
dARTMAP. Table 2 shows that this property can also be 
extended to FasArt based architectures. Comparison of tables 2 
and 4 show that dFasArt performance is again similar to those of 
Fuzzy ARTMAP and dARTMAP. 

Table 4 Performance of FasArt and dFasArt results in noisy 
environments 

r FaY&t dFasArt 

T-3 
T-5 

Nodes Accuracy 
380.8 80.6% 
455 77.8% 

Nodes Accuracy 
100.35 82.10% 
117.5 81.81% 

According to tables 2 and 4, it can be concluded that distributed 
code results in more reliable systems in noisy environments, due 
to the fact that distributed prediction is made on the average of 
several nodes. 

4. CONCLUSIONS 

Distributed learning has been recently proposed as a means to 
solve category proliferation problem in Fuzzy ARTMAP neural 
network and its derived architectures. In this sense, dARTMAP 
was developed as a particular architecture that introduced several 
new features in the original Fuzzy ARTMAP in order to 
implement distributed learning for pattern recognition problems. 

This paper has analyzed those new features and their influence in 
the neural network performance. These innovations include new 
dynamic coding hyperboxes determined by dynamic weights 
for distributed code, and a new CAM rule to allow distributed 
activation of the network nodes. In addition, switching to WTA 
after mismatched predictions and distributed learning laws are 
introduced to enable fast stable learning. Finally, instance 
counting balances the effect of classes represented by many 
nodes in distributed prediction, and credit assignment avoids 
learning patterns by nodes that have not contributed to a correct 
distributed prediction. 

Fuzzy ARTMAP and dARTMAP performances were compared 
in several pattern recognition benchmarks in order to extract 
qualitative conclusions about the advantages and limitations of 
distributed code over WTA in Fuzzy ARTMAP based 
architectures. The benchmarks were selected varying the number 
of output classes, the probability of occurrence of them, the 
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convexity of the geometric regions associated and the shapes of 
these regions. 

The geometry of the problem has revealed an item of major 
influence on the performance of distributed learning vs. WTA. 
dARTMAP accuracy is significantly decreased when output 
classes are not equally probable due to instance counting 
mechanism. In addition, Fuzzy ARTMAP and dARTMAP 
performances are equivalent when coding not convex regions 
since, in such geometry, distributed CAM rule is forced to 
switch to WTA. Moreover, if output classes have rectangular 
shapes, dynamic coding hyperboxes can not outperform the 
original rectangular hyperboxes and distributed prediction 
reduces accuracy. However, the number of output classes has not 
been found to affect dARTMAP code compression. In summary, 
in Fuzzy ARTMAP based architectures distributed learning 
achieves code compression without affecting accuracy only in 
problems where output classes are equally probable, and 
associated to convex regions with non-rectangular shapes. 

From the geometric constrains mentioned above, it can be 
deduced that dARTMAP is useless in one dimension 
classification problems, since decision borders between output 
classes are single points and thus Fuzzy ARTMAP coding 
hyperboxes will tit in better. 

Performance in noisy environments has also been tested, 
showing that dARTMAP code compression is increased when 
training patterns include noise, even in geometries more suitable 
for Fuzzy ARTMAP. Moreover, dARTMAP turns out to be 
more reliable in noisy environments since its output class 
prediction is based on the average of several nodes, thus 
minimizing the influence of noise. The influence of order of 
pattern presentation has also been tested experimentally, 
showing that dARTMAP is more dependent on this order. 

In this paper dFasArt has been introduced as a modification of 
FasArt neuro-fuzzy system that incorporates distributed learning 
for pattern recognition problems. The new features found in 
dARTMAP algorithm have been adapted to FasArt architecture. 
Therefore, a new distributed membership function has been 
defined, and FasArt learning laws have been modified to 
support distribute learning. dFasArt also incorporates instance 
counting, credit assignment and switching to WTA after 
prediction mismatch. 

FasArt and dFasArt performances have been tested in those 
geometries suitable to distributed learning,. Advantages for 
distributed learning vs. WTA have also been found in the above 
mentioned conditions. Experimental results show that dFasArt 
performance in such geometries is even comparable to those of 
dARTMAP and Fuzzy ARTMAP. dFasArt has also revealed to 
be less sensitive to variations in the order of pattern presentation. 
Furthermore, an increase in dFasArt performance in noisy 
environments has also been observed. 

After successfully applying distributed learning to FasArt based 
architectures in order to achieve code compression without 
accuracy reduction, ongoing research focus on the adaptation of 
the new dFasArt architecture to function identification problems. 
New improved distributed learning laws seem likely to be 
developed for dFasArt in order to perform efficient distributed 
coding of non-convex regions. Furthermore, geometric 
constrains for distributed learning found in pattern recognition 
problems will help determine the type of functions where 
distributed learning will outperform WTA. 
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