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ABSTRACT 

This paper addresses the control of a penicillin fermentation pilot 
plant using IMC strategies with modules based on FasArt neuro- 
fuzzy system. FasArt features fast stable learning and shows 
good MIMO identification, which makes it suitable for 
development of the modules in IMC. Experiments have been 
done training FasArt on real data and applying the controller to 
the pilot plant, and show that the trend of reference is captured, 
thus allowing high penicillin production. Other experiments have 
been aimed towards development of soft sensors of important 
variables using FasArt. Biomass, viscosity and penicillin 
production predictors are very accurate, and reveal that FasArt 
modules could be employed for fault detection, control with 
constraints or predictive control. 

1. INTRODUCTION 

Control of biochemical processes is very difficult due to their 
strong non linear dynamics and time varying parameters. 
Moreover, many variables are of difficult measurement, and 
usually involve expensive laboratory analyses. This is why 
traditionally experts knowledge and heuristics have been used 
for the control of such processes. However, biochemical 
products, in particular penicillin, have an important added value, 
and therefore improvements in production are of great industrial 
interest. For this reason, during the last decades many researches 
have been making a careful laboratory study of these processes 
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A traditional approach for dealing with the control non linear 
systems with variable parameters has been to seek an equivalent 
linear system, thus simplifying the problem. However, loss of 
information may be critical in the penicillin production problem, 
because large perturbations and non linearities can take the 

Fig. 1: Basic IMC structure, where G is the plant, S is the 
model, G, is the controller; d and _d are the 

perturbation and its estimation. 

system outside the equilibrium state. For all these reasons, it can 
be useful to make use of non-linear techniques as fuzzy neural 
networks. 

To cope with the problems derived from perturbations and 
sensor uncertainty, Internal Model Control (IMC) strategy has 
been selected, since it features good robustness to noise. Besides, 
it permits a rational control design procedure, allowing 
considering control quality and robustness in design decisions 
[13]. The basic IMC structure shown in figure 1 includes a plant 
model, and the inverse model, to control the actual plant. Though 
any feedback controller can be structured as an IMC, and 
conversely an IMC can be transformed into feedback form, the 
design of the controller associated to IMC is easier than the 
design of that associated to a feedback structure, due to the fact 
that IMC structure allows including explicitly robustness as a 
design objective, with the use of perturbation estimation as 
feedback signal. Therefore IMC has dual stability, perfect 
control and zero offset properties [13] [12]. Furthermore, it has 
been proved that IMC can be extended to control of non linear 
plants [ 111. 

However, the lack of a plant model or the inverse model can be a 
serious drawback. If valid analytical models are not available, or 
are not accurate enough, which is often the case for 
bioprocesses, neuro-fuzzy methods can be considered as useful 
approaches to build model and control modules by learning 
direct and inverse dynamics from plant data. Furthermore, neural 
networks are well suited for non linear plant identification. 

FasArt [4] is a neuro-fuzzy system which main features are fast 
stable learning guided by matching, fuzzy representation of the 
knowledge which allows the inclusion of expert rules, and good 
MIMO identification performance which makes it very 
appropriate for building IMC strategies. 

Due to the inherent difficulty of this problem, it has been studied 
in incremental levels of complexity. First, a simulation was 
required to test the capabilities of FasArt neuro-fuzzy system. 
Much research has been devoted to mathematical modeling of 
penicillin production process, but there is not a model that 
satisfactorily describes the process, and they usually are very 
sensible in their parameters. However, there are several 
simplified models [22] [2] [16] [20] [21] that describe the 
process under nominal conditions. Among these, Tiller [22] 
model has been selected because it is a segregated model, and 
thus permits a better understanding of the underlying dynamics. 
This model assumes the well-accepted fact that biomass 
penicillin fermentation presents an initial exponential growing 
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stage followed by a production stage, of slow growing. A 
simulator was developed based on the Tiller model and used to 
generate data around nominal conditions and test FasArt 
identification capabilities. Successful identification results have 
been reported elsewhere [6] [1 I] [ 141. 

As a first approximation to the control of a simulated plant using 
these neuro-fuzzy models was to invert the obtained fuzzy rules 
modeling plant dynamics, which in turn were learned by FasArt 
neural network, as has been done for other non linear systems 
[8]. However, in order to make controller more robust to noise, 
IMC strategy has also been tested using FasArt modules 
mapping direct and inverse dynamics [14]. In addition, Adaptive 
IMC strategies were implemented using FasBack, a modification 
of FasArt that can also learn to minimize output error, with 
satisfactory results in cases of varying parameters [ 141 [ 11. 

After having satisfactorily tested FasArt identification 
capabilities with simulated data, real data was collected at 
Antibioticos, S.A.U. fermentation pilot plant in Leon, Spain for 
training the neural networks. Initially the main objective has 
been to train models for IMC necessary modules. Correct results 
were obtained for the identification of biomass direct and inverse 
dynamics [I]. Here these FasArt modules trained on real data 
have been used within an IMC controller that has been tested in 
Antibioticos real plant. Moreover, this paper shows identification 
results for other important variables, which can be used for other 
purposes, such as fault detection, control with constraints or 
optimization. 

The rest of this paper is organized as follows: section 2 reviews 
FasArt architecture and some of its properties; section 3 presents 
the work carried out on Antibioticos pilot plant, to obtain an 
IMC controller for biomass, and several soft sensors for 
important variables in the process. Finally, section 4 presents the 
conclusions. 

2. REVIEW OF FasArt 

FasArt architecture 
FasArt [4] is a hybrid system based on Adaptive Resonance 
Theory (ART) [15] family of neural networks, which also 
combines the advantages of fuzzy sets theory [24]. Its 
architecture is similar to that of Fuzzy ARTMAP [lo], as shown 
in figure 2. Two unsupervised modules (ART, and ARTa) 
cluster input and output respectively, governed by several 
sintony parameters: vigilance parameters pA and pa determine 
how line clustering of input and output should be; fuzzilication 
rates y A and y a indicate how fuzzy or crisp input and output 
clusters are; finally PA, pa, aAc and pa’ are learning rates. The 
inter-ART module contains the relations between ARTA and 
ARTa. FasArt neural network overcomes several ambiguities 
present in Fuzzy ARTMAP supervised neural networks, by the 
introduction of fuzzy logic in a formal way, so that learning is 
equivalent to the generation of a fuzzy rules set. This is achieved 
by establishing a duality between neuron activation function and 
fuzzy set membership. Furthermore, prediction consists of the 
use of a fuzzy inference engine with such rules. Due to the 
duality between neural network and fuzzy system present in 
FasArt, the universal approximation principle obtained for fuzzy 
systems [23] can also be applied to FasArt. Also due to this 
duality, inversion of the rules is straightforward, i.e. inversion of 
the model can be made by reverting the knowledge of direct 

dynamics, as it has been used for the control of other non linear 
plants, in which the consequents (outputs) and some of the 
antecedents (state variables) are used to obtain the rest of the 
antecedents (control signals) [9]. 

Further improvements of FasArt include learning guided by error 
minimization in FasBack [7], which can be used to develop 
adaptive controllers [ 141 [ 1] 

Use of FasArt modules in IMC 
The main modules necessary for implementation of IMC are a 
model of the plant to be controlled, and the actual control 
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Figure 2. FasArt architecture. 

module, which most often is related to as inverse model of the 
plant. As it has been mentioned, FasArt is specially adapted to 
build such modules. 
The plant model must capture its dynamics of the plant. In the 
case of well known dynamics, a mathematical model of the plant 
can be developed, although this can be costly and inaccurate in 
many industrial plants, as is the case in the penicillin production 
plants. In this case, neural networks are a good approach, as 
shown in [5], where identification of a penicillin plant using 
simulated and real data is carried out. 

To build the control module (inverse model) the direct plant 
model should be inverted. However, this is not always possible, 
due to the fact that either the inverse may not exist, or its 
implementation is not physically feasible. Some reasons for this 
are: the model is a non minimum phase model, has time delays, 
or using its inverse will require high gain loops. Furthermore, in 
most practical cases analytical models are not available, and 
therefore neural networks can be used to learn inverse dynamics, 
taking as input signal the outputs of the plant, and as supervision 
signal the inputs to the plant, either in the expected operational 
range of the plant [17], or in the whole operating space. FasArt 
neuro-fuzzy system offers these two possibilities to obtain the 
control module: 

a) by inverting direct dynamics fuzzy rules. In this case, fuzzy 
rules inversion can be applied to rules extracted from 
FasArt plant model weights, as shown in [14]. To build 
such a control module requires one model learning (direct), 
and the availability of an inversion method. 

b) by learning inverse dynamics. In this case, a control module 
can be built with single model learning (inverse). 
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Here the second approach has been adopted. Therefore, FasArt is 
used to learn direct dynamics to build the plant model, and 
inverse dynamics to build the control module. 

3. EXPERIMENTAL RESULTS 

Objectives 
Provided that the FasArt biomass identifiers trained on real data 
were satisfactory [I], IMC strategy has been tested in 
Antibibticos pilot plant for the control of biomass. Although, the 
final objective of the fermentation is the production of penicillin, 
the control of penicillin is necessarily related to the control of 
biomass [18]. Moreover, since penicillin is a secondary 
metabolite, it is more convenient to control biomass, and 
therefore more sensible to the manipulated variables. However, 
it is not necessary to achieve very accurate tracking, since 
maintaining a desired trend the expected penicillin production 
can be obtained, as far as process constraints are not violated. In 
this sense, a biomass reference has been proposed that averages 
the biomass achieved in several successful fermentations that 
were controlled by experts. This reference is consistent with the 
known fact that biomass presents an initial exponential growing 
stage followed by a production stage, of slow growing, and 
therefore satisfactory control should achieve the production stage 
at the desired time and with desired level of biomass. 

In addition, working with fermentation experts reveals that 
reliable software sensors for some variables is a very useful tool 
for process supervision. Although hardware sensors technology 
has considerably improved, there are still many variables that are 
monitored through laboratory analyses. These are often 
expensive, and involve considerable delays, and thus became 
useful for a posteriori analysis of the process, but hardly for its 
on line supervision. 

Control 
To test the validity of this study experiments have been carried 
out in a fermentation pilot plant of Antibidticos at Leon, Spain. 
Plant model and inverse model for identifying and controlling 
biomass were obtained training FasArt on real data collected 
from this pilot plant. 

Training data consisted of a total of 28 fermentations, including 
standard (normal behavior under nominal conditions), and non 
standard (normal behavior under not nominal conditions). At 
this stage, anomalous fermentations have not been used in order 
not to disturb the knowledge acquired in the fuzzy rules. For the 
plant model, six input were used, including information of 
nutrients additions, agitation and past measurements of some 
outlet gases. For the inverse plant, model inputs were desired 
biomass and past measurements of outlet gases, while outputs 
were additions to the tank and agitation. It can be seen that some 
of the variables correspond to plant outputs that are obtained 
through laboratory measurements, and therefore are sampled at 
low rates. For training purposes, since all this variables are 
supervision signals (i.e. they are presented at ARTn module), 
they were linearly interpolated. This can be done because in the 
test stage (on line control) their values are not necessary. Due to 
confidentiality reasons more specific details on the variables 
involved cannot be given. Also all figures are scaled to [O,l]. 
FasArt training parameters are those shown in table 1. 

Table 1. FasArt parameters in experiments. 

s P Y BC 
~TA 1.0 0.5 10.0 0.1 
ART, 1.0 0.95 100.0 0.1 

A sample result obtained in the pilot plant is shown in figure 3. 
Although tracking of biomass reference is not very accurate, the 
general trend is captured. Moreover, considering that laboratory 
measurements involve a high uncertainty and sampling rate is 
low, laboratory profile is considered by Antibioticos experts only 
as a trend. As mentioned above this can be considered 
satisfactory since the objective is not to control biomass but to 
indirectly control penicillin production. In fact, the production 
achieved was high. The plant model in IMC produced an output 
shown in the figure, which is affected by noise in the values of 
gases measurements, which introduces high frequency 
components, although the trend is consistent with measured 
values. This also proves that IMC is robust to small perturbations 
in plant measurements. 

1 
Figure 3. Pilot plant control experiment. Solid plot is 

reference biomass, dashed is predicted and squares are 

laboratory measurements. 

Monitoring 
As mentioned above, software sensors are an important tool for 
fermentation experts to supervise the process. Therefore, besides 
the implantation of an IMC controller in Antibioticos pilot plant, 
some FasArt models were developed for monitoring important 
variables, such as biomass, penicillin production and viscosity. 
These models were trained on the same real data, with similar 
input variables to the plant model described above. 

Figure 4. Biomass prediction of FasArt on real input data, where 
laboratory measurements are shown by squares. 

A biomass software sensor was developed using past values of 
laboratory measurements of biomass as additional input variable. 
This input was not considered for IMC plant model since it 
should rely on the availability of such measurements, cannot be 
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guaranteed for on line performance. However, since the main 
utility of the software sensor is to serve the fermentation expert 
as a supervision tool, this constraint is not as severe here. Results 
are shown in figure 4, where it can be appreciated that prediction 
is accurate. 

This predictor can be more accurate that the plant model if past 
laboratory measurements are recent, while otherwise its 
prediction should be worse. In the future, a model switching 
strategy could be used dependent on the time elapsed since last 
measurement. 

For an aerobic bioprocess such as the penicillin production 
fermentation, it is necessary to maintain dissolved oxygen in the 
tank over certain threshold. This is achieved by an adequate 
oxygen transfer in the fermentor. Usually this capability is 
estimated by means of the oxygen transfer coefficient at mid 
point of fermentor (K,a). Though this value can be estimated 
from exhaust gas measurements obtained through mass 
spectrometry, in general these methods are not valid in the case 
of viscous mycelial fermentations [3], as is the case of penicillin 
production. This is due to the fact that high viscosity 
considerably reduces such transfer capability and affects Ki_a 
estimation. However, viscosity itself can be used as good oxygen 
transfer estimator. Furthermore, a nominal profile of viscosity 
can be a good indicator of correct process evolution, and thus it 
can be used for fault detection during the fermentation. However 
its measurements are difficult, expensive and have an important 
delay and then a predictor viscosity becomes very useful for the 
fermentation expert. It could also be used for the implementation 
of a predictive controller that has to consider constraints in 
dissolved oxygen. 

Here a neuro-fuzzy software sensor of viscosity was developed 
by training FasArt on the same real data used for IMC modules 
above. Parameters used are also those shown in table 1. Again, 
feedings and gas measurements were used as inputs. In addition, 
the viscosity value obtained in the last laboratory measurements 
is used as input to the predictor. Results for one unseen 
fermentation are shown in figure 5, where it can be seen that 
prediction is very accurate. 

Figure 5. Viscosity prediction of FasArt on real input data, 
where laboratory measurements are shown by squares. 

In addition to viscosity, a software sensor for penicillin 
production has been developed. It should be understood that the 
final objective of the fermentation process is penicillin 
production, and therefore after identification and control, 
research should be aimed to optimization of the process. In this 
sense, measurements of penicillin produced should be taken 
frequently during the fermentation. However, as similar to 

viscosity and biomass, penicillin laboratory measurements have 
an important delay and cost. Furthermore, in the particular case 
of this variable this is especially critical and therefore 
measurements are taken at very low rates, as can be seen in 
figure 6. 

The penicillin production software sensor was built training 
FasArt on the same training data as above. Here again training 
parameters were those shown in table 1. Inputs to the predictor 
were feedings, gases measurements and previous laboratory 
measurement of penicillin production. As shown in figure 6, 
results are very accurate. 

Figure 6. Penicillin prediction of FasArt on real input data, 
where laboratory measurements are shown by squares. 

4. CONCLUSIONS 

In this paper, FasArt neuro-fuzzy system has been applied within 
an IMC strategy for the difficult task of biomass control in the 
penicillin production process. This problem is highly non linear, 
has time varying parameters, presents high levels of noise in the 
measurements, and suffers from a lack of good mathematical 
models considering the variability of the process. To treat this 
problem IMC strategy is a reasonable approach, since it presents 
noise rejection, several desirable properties have been proved for 
the control of linear systems, and can be easily extended to non 
linear problems with the use of neural networks of fuzzy 
systems. 

In addition, FasArt neural network provides a solution for the 
task of building model and control modules in IMC structure, 
due to its fast stable learning from examples and good 
performance in plant identification. In this sense, after having 
satisfactory experience in the use of FasArt for identification and 
control of a simulated penicillin process,’ real data from a 
fermentation pilot plant has been collected to develop neuro- 
fuzzy models of biomass production. The resulting IMC control 
has been applied to Antibioticos pilot plant to track biomass 
reference selected to guarantee profitable penicillin production. 
The proposed controller is capable to maintain the general trend 
of biomass reference, and thus allow a high production. 

Furthermore, software sensors have been developed for three 
important variables that are only measured at very low rates. 
Biomass, viscosity and penicillin production have been 
monitored with very accurate predictions. These results can be 
used by fermentation experts for their own diagnostics, or in new 
tools for fault detection, control with constraints or predictive 
control. 
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Ongoing research is devoted to the development of MIMO 
controllers to simultaneously track references of biomass, 
viscosity or other important variables in order to optimize 
penicillin production. In addition, FasArt capabilities to include 
expert knowledge expressed in terms of fuzzy rules should be 
exploited to achieve more reliable identifiers, and to provide 
with fuzzy explanations of the decisions taken during the control 
stage. 
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