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ABSTRACT 

FLAS (Fuzzy Linear Adaptive System) is a self-organizing 
fuzzy system for non-linear function identification, that uses a 
learning method based on clustering to generate fuzzy rules and 
tune their parameters. This method reduces the influence of 
pattern presentation order permits building prototypes with 
physical meaning, allows measuring the importance of each 
variable, and therefore reduces the influence of noise. FLAS 
fuzzy membership functions are defined as barycentric 
coordinates in a simplex, yielding equivalence between 
Mandami and Takagi-Sugeno defuzzification methods. This 
allows FLAS to make piecewise linear interpolation and thus 
facilitates a rule fusion procedure. In simulations done for noisy 
non-linear function identification tasks, FLAS showed better 
results than other comparative systems yielding smaller 
identification error and number of rules. In the difficult task of 
bioprocesses variable identification FLAS also outperforms 
other systems. FLAS theoretical features and good identification 
performance provide good expectations for its implementation 
within different Model Based Controllers. 
Keywords: Fuzzy systems, simplicial topology, clustering, non- 
linear systems, noisy functions. 

1. INTRODUCTION 

Identification and control of non-linear processes has been 
subject of much research due to its difftculty and industrial 
interest [2] [6]. Moreover, this task often involves time varying 
parameters, noisy data and variables of difficult measurement 
[4]. This work is devoted to identification task, which is required 
by Model Based Controllers. In problems without uncertainties, 
satisfactorily results can be achieved by traditional interpolation 
methods, such as linear regressions or splines 191. However, in a 
more realistic case where measurement involve uncertainties, 
several existing techniques (statistics, fuzzy systems, neural 
networks...) can be applied, though not completely resolving the 
problem. All of them have advantages and drawbacks: 

Statistical methods are very efficient, but need large quantities 
of data, and impose several properties and conditions to the 
problem that cannot always be verified [ 11. 

Fuzzy systems allow to cope with these uncertainties using 
techniques inspired in human reasoning [3], and allow 
introducing explicit human knowledge [20], but their 
construction need expert knowledge to be transformed into rules. 

Neural networks extract knowledge from data using learning 
methods [I 11, but store this knowledge in a manner difficult to 
use in others systems such as controllers. 

There are many hybrids systems [18] that combine the 
advantages of these techniques with different objectives. FLAS, 
the system proposed here is aimed to the application of 
identifiers to non-linear Model Based Controllers in problems 
with uncertainty. FLAS combines the facilities of fuzzy systems 
to integrate human knowledge, a clustering algorithm to extract 
knowledge from noisy examples, and a representation of this 
knowledge in a piecewise linear reasoning surface that makes 
control design easier. 

The rest of this paper is organized as follows: section 2 
introduces some concepts of complex simplicial topology, and 
describes FLAS; section 3 shows experimental results for SISO 
and MIS0 identification; section 4 discusses FLAS application 
to Model Based Controllers; finally section 5 presents the 
conclusions. 

2. FLAS DEFINITION 

FLAS (Fuzzy Linear Adaptive System) is a self-organizing 
fuzzy system for function identification, that maps functions 
coding knowledge in m piecewise linear reasoning surfaces 

f  :xn +w+‘, where n is the input space dimension, m is the 
output space dimension and N=n+m, is the problem dimension. 

Although there exist fuzzy systems that implement piecewise 
linear mappings [13], they use triangular memberships functions 
over rectangular supports, and therefore the support of a fuzzy 
set is constrained to have its limits coincident with the triangle 
vertices of all neighbor sets. This restriction is very hard to 
implement in self-organizing systems, since it means that 
triangle vertices should lay on a hyperectangular grid. To 
overcome such restriction while retaining the piecewise linear 
mapping capability, FLAS is proposed here based on the 
properties of the complex simplicial topology. To clarify the 
ideas involved, some basic definitions related to complex 
simplicial topology are presented below. 

Complex Simplicial Topology 

Definition. Let j’,...,p” be independentpoints in the Euclidean 

space % N, then the set of all points 7 = C:=, iii . $’ with 

~;~*a; = 1 and A, >o, is called open n-dimensional 

0-7803-5731-0/99/$10.00019991EEE II-10 



simplexo=(on)=(j50,..., Fn), with vertex the jS” ,..., F” 
points, I f  the condition ,I; > o is relaxed to 1; 2 0, the resulting 
set is called closed n-dimensional simplex.. 

[~]=[on]=[Po,...,~n], and the set Fn =[on]-(o”) is 

called the simplicial boundary of on. 

It is easy to prove that the simplex [c?] and (D”) are convex 
sets [IO]. Then the following alternative definition for closed 
simplex is also valid: 

Alternative definition. If  @‘,...,j?, E %*, InlN, the 
convex hull 

\ ’ \i=O 

of the set {@‘,...,$} is called 
(directed) n-dimensional volume: 

1 

vol,(p”,...,p”) = f  I 
1 

is nonzero, where 6’ = (p: ,..., p:), i = 0 ,..., n, and Ii are the 

i=O 1 

a closed n-simplex tf its 

PP ‘.. P,” 
: ‘. . . 

Pr .‘. Pnn 

(2) 

coefficients of the convex combination. 

The coefficients ai can also be considered the coordinates of a 

point 7 in the subspace generated by vertices F’, and they are 
called barycentric coordinates* with respect to the reference 

pointsp,. Then if ( P’,...,jZ? ) is a n-simplex, any r’ = (r, ,..., r,,) 

in XiN can be expressed by a (n+ I)-tuple &,...,h,), where 

vol, p” ,...,p 
( 

-i-l _ A+1 
,r,p ,...,P” 

4 =A(?)= 
) 

voi,,($O,...,pn) 
(3) 

The n-simplex is for the degenerated case where n=O a point; for 
n=l an interval; for n=2 a triangle; for n=3 a tetrahedron. The 

simplex cm can be considered as the simplest n-dimensional 

figure of 91iN geometry. 

Definition. The r-dimensional simplex generated by r+l 
arbitrary vertexes taken from the n+l vertexes of a simplex 
0 are called lateral r-dimensional simplex of CT, or simply faces 

cF'0fcT=0". 

Definition. A set K, made of a finite number of simplexes in an 

Euclidean space ‘91N 1s called a simplicial complex, or more 
briefly a complex, when it verifies the next two conditions: 
is11 If a simplex belongs to K, all its lateral simplex also 

belong to K. 

l In mechanics, if masses 1. that sum to one are located in points $ 
then the point 7 is the gravity center of the total mass. 

If o, and o2 are two simplex in K, then 

(~l)n(fl2)=0. 

Definition. The field of a simplicial complex K in ‘XN, i.e. the 
set made of all the simplex in K, provided with by the topology 

induced in it by that of % N, IS called rectilinear polyhedron 
R=IKI K is said to be one simplicial decomposition or 
triangulation of R. 

Definition. If  r’ is a point in a polyhedron R=IKI with the 
triangulation K, the simplex in K univocally determined as the 
open simplex that contains 7, is called simplex support of F, or 
briefly support of F 

Definition. Let 5 be a vertex of a simplicial complex K, then the 
set of all the polyhedron points whose simplex supports have 
vertex p2 is called the (open) star st p of j5. 

With these definitions it is possible to derive a fuzzy system 
associated to a simplicial complex K, by associating a fuzzy set 
to each vertex (3 in K. The membership function ,u,, of this set 

has the star of 3 as support. Therefore this support is formed by 
the union of the simplex supports of all the simplex with vertex 
p. Once defined the fuzzy support, the membership function and 
its properties shall be studied. 

Relation between fuzzy systems and simplicial topology 
From the barycentric coordinates /zi definition (3), it is 
immediate to see that these coordinates coincide with the convex 
combination parameters (1). Then, the necessary and sufficient 
condition for a point X to lay inside the simplex o, is that its 
barycentric coordinates 1, with respect to the simplex vertices 
verify: 

0 I Ai $1, for i = O,...,n (4) 

FLAS makes a piecewise linear mapping f from a n-dimensional 
complex K of 9X” to m n-dimensional complexes Kj 0’ = 1, . . . . m) 
of Vf’, where the pieces are n-simplexes. Then, if 2 lays inside 
a simplex 0 cK, the prediction for thej-th output variable has to 
verify: 

jp)=f(x)= a,(0) + Lb(i) '-3 (5) 
i=l 

where adi, for i = 0 to 1, are the linear combination coefficients, ., 
that depend on the simplex ~vertices (E;“(“),...,i;“(“)) and on 

pg = (pc(?) 
n+j )“” Pn+ j g(o))t , where pn+j D(i) is the prediction for the 

j-th output variable made by the i-th vertex of the simplex q i.e. 
the (n+j)-component of the prototype associated to the i-th 
vertex of the simplex cx Then, to obtain these coefficients is 
sufficient to solve the previous linear system (5), yielding: 

-40) voln p ( 
-cT(i-1) -IT -cT(i+l) >...>p ,Pj ,p 3~~~~~“‘“’ 

a,(i) = 
> 

( 
-m 

) 

(6) 
vol, p -en) >...> P 

Using Mandami defuzzification method, the estimation of thej- 
th output variable corresponding n-dimensional input vector X 
inside a simplex 0 cK, has the form: 
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c 

jy(g)= 5” 
t+, 9&> 

im 
(7) 

i=I 

However, as X is inside a simplex C, only the n+l fuzzy sets 

associated to the vertices (p”(‘),...,pC(“)) of this simplex 0 
can verify the convex conditions given by (4), and then (7) can 
be simplified to: 

where ,u “(i’(g) is the part of the membership function of the 
fuzzy set associated too(i) vertex, corresponding to the simplex 
support of cz It is easy to prove that the necessary and sufficient 
condition for (8) to be a linear combination of the input variables 

X , is that its denominator Cr=, pDCi) (2) is 1. Then, comparing 
this expression to linear combination (5) and coefficients in 
expression (6) yields: 

p(i) (;;)= 
vol, 

( 
240) ,,,,, p4-1),2, pdi+l) ,,,,, jj0) 

) 
vol, p ( 

-40) -dn) ,...,P > 
(9) 

This expression is coincident with the barycentric coordinate 
definition (3), which implies that the membership functions over 
a simplex are the barycentric coordinates with respect to this 

simplex. Thus, the fuzzy set associated to a cluster prototype F’ 

has as support the star st @‘, and as membership function a 

linear hyperpyramid of height 1 in the vertex pi, and 0 in the 
rest of star vertices. 

As a corollary of this result, considering that the coefficients of 
the convex conditions (4) coincide with the barycentric 
coordinates (3) and therefore with the membership values (9), it 
can be pointed out that the same conditions used to calculate 
which fuzzy sets are active, calculate also membership degrees 
to these sets. 

Finally, an important result is derived: with the proposed 
membership function Mandami and Takagi defuzzification 
methods are equivalent. To prove this it should be noted that as it 
has been imposed to denominator in (8) to be 1, with the 
proposed membership functions (barycentric coordinates), the 
defuzzification equation (8) can be expressed as: 

vol, ~D(o),...,~~(n) ( ) 
(10) 

This expression is linear in x , and therefore equivalent to the 
Takagi-Sugeno defuzzitication [ 121. 

Clustering 
Once the form of membership function has been defined, it 
becomes necessary to define its parameters. These are the 

vertices coordinates (class prototypes) j’, where i=l,...,c are the 
different classes. Traditionally values of fuzzy systems 
parameters are selected (i.e. fuzzy rules constructed) by the 
problem experts. FLAS allows this possibility, but as an self- 
organizing system it can automatically tune them by learning 
from examples. In order to do this, FLAS has a learning 
algorithm similar to some classical clustering algorithms [16], 
but with the following differences: 

Distributed learning: Most classical clustering algorithms [16] 
are winner-take-all. This implies ‘that each training pattern is 
learned by only one class. Thus, these algorithms are more 
sensitive to pattern presentation order. This influence can be 
reduced allowing each pattern to be learnt by all active clusters. 

Use of variable learning rate: A typical learning equation used 
in several self-organizing systems [ 161 is: 

WJ “““+I+(l-ppwJ”‘d (11) 

where Wyw and Wj’ld are the new and old prototypes of class 

J, /3~ [0 l] is a constant learning rate and I is the training pattern. 
Parameter ,B determines the learning innovation level: the closer 
to 1, the more innovative. However, using this learning equation 
has the drawback that the resulting class prototype has not a 
clear physical meaning 

Using for each class J a variable learning rate pJ of the form: 

PJ =llnJ (12) 

where nJ is the number of patterns classified in the class J, it can 
be easily demonstrated that cluster prototype is the gravity center 
of patterns coded in class J. This method reduces the influence 
of pattern presentation order and provides a physical meaning to 
cluster prototypes, that can be useful to apply statistical 
techniques. It can also be observed that this choice makes 
learning more conservative in classes that have coded a large 
number of patterns. 

Ellipsoidal reset: To control if a pattern belongs to a class, 
clustering algorithms use a reset algorithm. This may put limits 
to the perimeter of hyperrectangle associated to the class, as in 
FasArt [5], or to the radius of the hypersphere, as in the classical 
algorithms shown in [16]. This strategy is less sensitive to noise 
[19], but both suppose all features equally important. FLAS 
generalizes the latter strategy by allowing each feature to have 
different importance. In order to do this, the reset mechanism 
sets an ellipsoidal condition, where the ellipse semiaxis n can be 
interpreted statistically as the uncertainty level of feature i. 

These n parameters are the only that need to be tuned by the 
user. However, considering that they are related to the 
uncertainty level in the variables, their values can be selected 
using statistical techniques. Moreover, it is also possible to used 
techniques inspired in fractal theory [ 141, establishing a relation 
between the uncertainty levels ?: and the resolution scale ?7 at 
which the function should be mapped. Therefore, the optimal 
?: ,,y, can be estimated as the scale qopr at which the function 
starts to have a non-fractal behavior, i.e. the scale at which the 
hypervolume V of the mapping is invariant. Moreover this 
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technique allows estimating experimentally the fractal dimension 
D of the problem, using Besicovic dimension definition [ 141: 

v=p (13) 

where V is the hypervolume of the reasoning surface, 77 is the 
resolution scale and D the fractal dimension. Then it is possible 
to calculate an estimate of the fractal dimension b,, 
approximating the resolution scale 17 to the average square radius 

y  = (c;=l ~2)“~ of th e reset hyperellipsoid, i.e.: 

Lj=Ln L+l 
( 1 Y 

(14) 

Tessellation 
In two-dimensional problems (n=l, m=l), once the class 

prototypes p’ are known the identification problem is already 
solved. To predict the output associated to an input point it is 
only necessary to make a piecewise linear interpolation based on 
the two clusters prototypes closer to that input point. 
Unfortunately, in the general (n+m)-dimensional problem the 
generalization of the previous strategy, i.e. taking the n+l closer 
prototypes to the input point, does not produce a simplicial 
complex, since condition [S2] is not verified. In fact the 
associated reasoning surface is non-continuous. Then, to solve 
this problem it becomes necessary to generate a simplicial 

complex K with vertices the cluster prototypes j’ before to 
make predictions, thus ensuring the continuity of the prediction 
function. FLAS allows the user to make these links manually, 
but it can do them automatically using any of the two algorithms 
described below. 

Optimum algorithm: In Finite Elements Methods (FEM), there 
exist many criteria to define if a triangulation is optimum [17]. 
Among them, the shortest diagonal criterion has been selected 
since it is the easiest to implement. This is very important since 
FLAS is thought for high dimensional problems. To achieve the 
optimum solution with the shortest diagonal criterion implies to 

calculate all possible distances among all cluster prototypes p’, 
and to select the shortest links among them. Although this 
method has a high computational cost, it produces optimal 
simplicial complex K* (in the sense that links are the shortest) 
and it is independent of construction order. The generated 
complex K" is a convex set. This algorithm can be seen as a 
neural field in which all neurons are initially connected, but 
dynamically shorter connections inhibit larger connections that 
cross them. In order to reduce computational cost topological 
properties of simplicial complex can be applied. 

Constructive algorithm: This method starts with an initial 

simplex cr,, and in each step k introduces a new vertex Fk, that 
is linked to all previously introduced vertices if condition,[S2] is 
verified. This method generates a new Kk complex in each step k 
that is a convex set. The algorithms ends in step k=c-(n+l) when 
all cluster prototypes have been connected. It is verified that the 
boundary of the optimal complex K* coincides with the 
boundary of the last complex generated by the constructive 
method Kc-(“+‘). This method has the advantage of being very 
fast, but the prediction surface is generally suboptimal, and the 
simplex generated depends on the order of presentation of 

prototypes pk. 

Seek for an optimal order of presentation of prototypes pk for 
which complex K coincides with K" is subject of ongoing 
research. 

Rule Fusion 
As previously mentioned, one of the disadvantages of self- 
organizing fuzzy systems is that they generally generate more 
fuzzy rules than those that would be selected by experts. FLAS 
design is specially oriented to perform an automatic post- 
processing rule fusion. This is achieved by an algorithm that 
makes use of the piecewise linear form of the reasoning surface. 
This algorithm is as explained below for MIS0 identification, 
but it can be easily extended to MIMO problems: 

1. For each prototype p’, find out if it is included in a simplex 
o;, using convex conditions (4). 

2. With the simplex a; make a prediction on $, denoted by 

4, while the prediction of the prototype is pi,,. Then the 

n+l simplexes that form the $ star can be substituted by 

only one simplex (the simplex q) if oi -pn+, <f(y,+,), 
Î  ;I 

where f(y,+,) is a function of the uncertainty level in 
variable n+l, usually the identity function. With this 
procedure in each iteration the fuzzy rule base is reduced in 
R rules. 

This process is applied until no further fusion is achieved. The 
fusion algorithm can be generalized to cope with cases where not 

only a simplex q containing the vertices of prototype 5’ is 
searched, but also a sub-complex S c K that contain these 
vertices. 

FLAS identification algorithm 
Once FLAS learning mechanisms have been introduced, it is 
easy to define its identification algorithm. If an input vector X= 
(n ,,..., x,,) is presented: 

1. The fuzzification procedure consists of searching the n+l 
fuzzy sets activated by X, i.e. the n+l vertices of the 
simplex c that contain x’ This is the simplex whose n+l 
barycentric coordinates ,&, verify (4). These values are also 
the membership values &’ as shown in the demonstration of 
equation (9). 

2. Based on the piecewise linear reasoning surface 
implemented by FLAS, the defuzzification procedure is 
equivalent to an interpolation for each of the M outputs. It 
has also been shown that this defuzzification is equivalent 
to Mandami and Takagi-Sugeno defuzzification methods. 

3. EXPERIMENTAL RESULTS 

SISO identification performance 
A first experiment is carried out to test FLAS performance in a 
two-dimensional problem (n=l, m=l, i.e. a SISO system) taken 
from the literature [15], in order to compare with other 
identification systems such as Fuzzy ARTMAP [8], PROBART 
[15], FasArt [5] and FasBack [7]. All these systems are 
supervised neural architectures based on the Adaptive Resonance 
Theory (ART) [l 11. Their general architecture consists of two 
self-organizing classifier that cluster the input space (with N, 
nodes) and the output space (with Nb nodes), and a module 
linking the classifiers. They have been selected for comparison 
due to the fact that they all are self-organizing systems, and all 
but PROBART are fuzzy neural networks that allow knowledge 
introduction and interpretation, as well as FLAS. Moreover, 
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PROBART has been selected since it is specially designed to 
treat noisy problems. 

Table 1: Identification performance for the function given in 

. : 
0 I’ 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.6 0.9 1 

ii!/] 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Figure 1: FLAS identification performance. Top: actual 
values and FLAS estimation; bottom: actual vs. estimated. 

The proposed test, taken from [15], consists of the identification 
of a continuous noisy nonlinear signal: 

1 

[ 

I 
f(x)=-. lO+&z(lO.i-x) 

20 i=l I 
(15) 

where x is in radians. The range of test function f:%+% is 
[0.2295, 0.77051 for the input domain [0 I]. Gaussian noise, 
derived from a zero mean source with unit variance, has been 
added to the signal with a scale factor of 0.02. Thus the 
corrupted output signal for pattern p is given by 
y, = y(p) = f(xp) + 0.02~~~ where xp is the x-coordinate and 
Ed- N(O,l) is the Gaussian noise added. The x-coordinates were 

randomly chosen from a uniform distributed source. The training 
an test sets were generated with different sets of x-coordinates, 
but test output samples were noise-free. Performance has been 
evaluated by the root mean square error (RMSE), maximum 
absolute error (MAXAE) and the number of clusters generated. 
The RMSE value is computed as: 

(16) 

where dp is the desired output for pattern p, J+ is the actual 
output, and N is the number of patterns used for test. As 
previously mentioned, all identifiers were trained on noisy data. 
Both training and test sets consisted of 1000 data pairs. In all 
experiments FLAS parameters have been n=y2=0.02. 

Experimental results are shown in table 1, where RMSE and 
MAXAE are the aforementioned error indices, N, and Nt,. are the 
number of nodes used by each system, which are an indication of 
their complexity. As FLAS only has one module Nbr is not 
given. In all systems N, can be considered as the number of rules 
generated. Figure 1 shows FLAS estimation is very accurate. 
Furthermore, it can be seen that the clustering method 
implemented in FLAS achieves better results than all other 
identifiers, both in error indices and complexity. 

In a two-dimensional problem only test FLAS clustering 
performance has been evaluated, where tessellation is 
unnecessary. A three-dimensional problem is proposed here in 
order to deeply evaluate FLAS capabilities. 

Viscosity Identification 
Identification and control of biochemical processes is a difficult 
task due to their strong non-linear dynamics, time varying 
parameters and noisy variables, often of difficult and expensive 
measurement [2], [6]. Then, to illustrate FLAS identification 
performance on a real application case, the task of viscosity 
identification in the penicillin production process is studied here, 
using real data from Antibioticos S.A.U pilot plant. Results 
presented here correspond to MIS0 identification (n=2, m=l). 
For confidentiality reasons all the results are normalized in [0 11. 
FLAS was trained on data from 28 fermentations, with 
parameters x=y2=y3=0.1, to produce the reasoning surface 
shown in figure 2. 

Figure 2: FLAS reasoning surface for viscosity 
identification. 

Table 2: Identification performance in viscosity problem 
Model N, Nb RMSE MAXAE 
FasArt 87 16 0.06633 0.174292 
FLAS 44 0.05816 0.117020 

Once trained, FLAS was tested on an unseen fermentation. For 
comparison with FLAS, FasArt neuro-fuzzy system has been 
selected because in table 1 it shows the best compromise 
between error and complexity among other systems taken from 
the literature. Results in table 2 show that FLAS can be used in 
multidimensional real problems outperforming other existing 
systems such as FasArt. While error is reduced, the generation of 
a more compact rule set help experts understand the process and 
introduce new rules, and thus facilitate the control design. 
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5. APPLICATION TO CONTROL DESIGN 

As previously mentioned, FLAS has several properties that make 
it suitable for Model Based Controllers. These features derive 
from the piecewise linear reasoning surface FLAS implements. 
Its advantages to design modules for several control 
architectures are summarized below. 

Internal Model Control: FLAS rules can be easily inverted. 

Model Based Predictive Control: the application of linear 
programming optimization theories to develop an optimization 
procedure for predictive controllers based on FLAS is subject of 
ongoing research. 

Fuzzy Control: Membership functions proposed in FLAS imply 
an equivalence between Mandami (used mainly in classification 
problems), and Takagi-Sugeno (used mainly in control 
problems) defuzzification methods. Furthermore, the 
interpretation of the barycentric coordinates as membership 
functions, facilities the explicit knowledge introduction in the 
controller by experts in the problem to solve. 

6. CONCLUSIONS 

FLAS has been presented as a self-organizing fuzzy system that 
performs piecewise linear mapping of non-linear functions. The 
membership functions of the fuzzy sets present in FLAS rules 
are defined as the barycentric coordinates over simplicial 
complexes. Theoretical properties derive from this definition, 
standing out the equivalence between Mandami and Takagi 
defuzzification methods, the capability to generate piecewise 
linear reasoning surfaces and the facility to reduce the number of 
rules using the proposed rule fusion method. 

As many identification systems, FLAS design parameters are 
user tunable. However, these parameters have clear physical 
meaning, since they correspond to the maximal uncertainty level 
expected for each signal. This has at two-fold benefit: in one 
hand the identifier design can be done using knowledge of the 
problem; in the other hand it facilitates the analysis of the 
system, since there exists a relation between the values of these 
parameters and the fractal dimension of the problem. 

Experimental results have been obtained for identification tasks 
using simulated and real data, showing that FLAS allows a 
reduction in both prediction error and system complexity. 

Furthermore, FLAS theoretical features and, good identification 
performance provide good expectations for its implementation 
within different Model Based Controllers: its rules can be easily 
inverted, as required by IMC; linear programming could be used 
to build optimizers on FLAS models in order to build MBPC; 
and its reduced rule set and easiness to introduce new rules, 
make it advantageous to build fuzzy controllers. 
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