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Abstract: This paper introduces the use adaptation in IMC strategy for the control of a 
simulated penicillin plant. The plant model and control modules are built using FasBack 
neuro-fuzzy system, featuring fast stable learning guided by matching and error 
minimisation and good identification performance. Control results show good general 
performance both in the nominal case and in the presence of noise. FasBack on-line 
adaptation capabilities are used to develop an adaptive IMC, which shows to improve 
performance in realistic cases of time varying parameters. Furthermore, real data 
coming from pilot plants are used to train fuzzy neural networks with satisfactory 
identification results, and obtained modules are used within IMC with similar results to 
those build from simulated data. Copyright © 1999 IFAC 
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1. INTRODUCTION 
 
Biochemical processes are very difficult to control 
due to their strong non linear dynamics and time 
varying parameters. Moreover, many variables are of 
difficult measurement, and usually involve expensive 
laboratory analyses. For these reasons experts 
knowledge and heuristics are used for the control of 
such processes. However, biochemical products, in 
particular penicillin, have a significant added value, 
thus being of great industrial interest. For this reason 
during the last decades many researches have been 
making a careful laboratory study of these processes 
(Mou, 1979; Tiller et al., 1994). 
 
Dealing with non linear systems with variable 
parameters is a most difficult task in the systems 
control field. Traditional approach has been to search 
for an equivalent linear system, i.e. adjusting control 

parameters according to a linearization of the system 
transfer function near its equilibrium state, so that the 
equilibrium state is an attractor of the state space of 
the system. Processing of non linearities is avoided 
due to its complex mathematical nature. This solution 
simplifies the problem, but loss of information may 
be critical in the penicillin production problem, due 
to the fact that large perturbations and non linearities 
can take the system outside the equilibrium state. 
 
Internal Model Control (IMC) structure permits a 
rational control design procedure, allowing 
considering control quality and robustness in design 
decisions (Garcia and Morari, 1982). The basic IMC 
structure (see figure 1) comprises a plant model, and 
the inverse model, to control the actual plant. Though 
any feedback controller can be structured as an IMC, 
and conversely an IMC can be transformed into 
feedback form, the design of the controller associated 



to IMC is easier than the design of that associated to 
a feedback structure, due to the fact that IMC 
structure allows including explicitly robustness as a 
design objective, with the use of perturbation 
estimation as feedback signal. This allows (Garcia 
and Morari, 1982) IMC to have dual stability, perfect 
control and zero offset properties. Furthermore, it has 
been proved that IMC can be extended to control of 
non linear plants (Economou-86). 
 
Despite these advantages, the lack of a plant model 
or the inverse model can be a serious drawback. If 
valid analytical models are not available, or is not 
enough accurate, which is often the case for 
bioprocesses, neuro-fuzzy methods provide a 
solution to build model and control modules by 
learning direct and inverse dynamics, and are well 
suited for non linear plant identification. FasBack  
neuro-fuzzy system (Cano et al., 1997a) feature fast 
stable learning guided by matching and error 
minimisation, fuzzy representation of the knowledge 
which allows the inclusion of expert rules, and good 
MIMO identification performance which makes it 
very appropriate for building IMC strategies. 
Furthermore, FasBack on-line stable adaptation 
capabilities permit the design of an adaptive IMC, 
(AIMC) which is of great interest for the control of a 
penicillin plant, in which not only parameters vary 
with time due to production degradation or strain 
mutations, among other effects, but also production 
results vary among fermentations even under the 
same conditions. 
 
The rest of this paper is organised as follows: section 
2 briefly describes FasBack as a neuro-fuzzy system, 
and explains how to build FasBack modules for an 
AIMC. Section 3 presents AIMC applied to a 
simulated penicillin plant, in the cases of nominal 
plant, presence of noise and time varying plant 
parameters. In section 4 the same experiments are 
carried out with neuro-fuzzy modules trained with 
real data. Finally, section 5 presents the conclusions. 
 
 

2. FasBack: AN ON-LINE ADAPTIVE FUZZY 
NEURAL NETWORK 

 
2.1. FasBack description 
 
FasBack architecture (Cano et al., 1997a) is a hybrid 
system based on Adaptive Resonance Theory (ART) 
(Grossberg, 1976) family of neural networks, also 
combining the advantages of fuzzy sets theory 
(Zadeh, 1965). It is initially based on Fuzzy 
ARTMAP (Carpenter et al., 1992) architecture, 
which has two unsupervised modules (ARTA and 
ARTB) which cluster input and output respectively, 
while another module contains the relations between 
them. FasArt neural network (Cano et al., 1996a) was 
proposed to overcome the several ambiguities 
observed on Fuzzy ARTMAP supervised neural 
networks, by the introduction of fuzzy logic in a 

formal way, so that learning is equivalent to 
generating a base of fuzzy rules, and prediction 
consists of the use of a fuzzy inference engine with 
such rules. Due to the duality between neural 
network and fuzzy system present in FasArt, the 
universal approximation principle obtained for fuzzy 
systems (Wang, 1994) can also be applied to FasArt. 
Also due to this duality, inversion of the rules is 
straightforward, i.e. inversion of the model can be 
made by reverting the knowledge of direct dynamics. 
Furthermore, in (Cano et al.,1997b) rules partial 
inversion is used for the control of a simulated 
penicillin plant, in which the consequents (outputs) 
and some of the antecedents (state variables) are used 
to obtain the rest of the antecedents (control signals). 
 
Besides these improvements, FasBack makes use of 
backpropagation algorithm (McClelland and 
Rumerlhart, 1986) to refine learning in order to 
reduce global error, by locally relearning the wrong 
input/output relations. This is carried out by using the 
descending gradient method, which vary parameters 
(weights) in the direction indicated by the derivative 
of error with respect to the parameters vector (Wang, 
1994). Furthermore, a penalty method is used to 
reduce the influence of wrong rules, although these 
rules are not completely forgotten and can be recalled 
if they become valid again. Due to the fact that this 
refining is local, and old rules are not completely 
forgotten, adaptation is stable and can be carried out 
on line, without the need of storing previously 
learned patterns, as it would be the case with 
multilayer perceptrons using backpropagation 
learning algorithm.  
 
FasBack is characterised by several sintony 
parameters, which have clear physical meaning: 
vigilance parameters ρA and ρB which show how fine 
clustering of input and output, and fuzzyfication rates 
γ A and γ B indicating how fuzzy or crisp input and 
output clusters are. 
 
 
2.2. Use of FasBack modules in AIMC 
 
The main modules necessary for implementation of 
AIMC are a model of the plant to be controlled, and 
the actual controller, which most often is related to as 
inverse model of the plant. As shown previously, 
FasBack is specially adapted to build such modules.  

 
Fig. 1: Basic IMC structure, where G is the plant, G

is the model, Gc is the controller; d and d are the
perturbation and its estimation. 

 



The model module must capture direct dynamics of 
the plant. In the case of well known dynamics, a 
mathematical model of the plant can be developed, 
although this can be costly and inaccurate in many 
industrial plants, as is the case in the penicillin 
production plants. In this case, neural networks are a 
good approach, as shown in (Cano et al., 1996c), 
where identification of a penicillin plant using 
simulated and real data is carried out. 
 
To build the controller module (inverse model) the 
direct plant model should be inverted. However this 
is not always possible, due to the fact that either the 
inverse does not exist, or its implementation is not 
physically feasible. Some reasons for this are: the 
model is a non minimum phase model, has time 
delays, or using its inverse will require high gain 
loops. However, in most practical cases an analytical 
model is not available, and therefore neural networks 
can be used to learn inverse dynamics, taking as 
input signal the outputs of the system, and as 
supervision signal the inputs to the system, either in 
the expected operational range of the plant (Hunt and 
Sbarbaro, 1991), or in the whole operating space. 
FasBack neuro-fuzzy system can be used both (a) by 
inverting direct dynamics fuzzy rules, and (b) by 
learning inverse dynamics, and adaptation can be 
enabled in order to locally refine the general inverse 
model. In the case (a), fuzzy rules inversion can be 
applied to rules extracted from FasBack plant model 
weights, as shown in (Cano et al., 1996b). To build 
such a control module requires one model learning 
(direct), and also the availability of an inversion 
method. In the case (b), a control module can be built 
with a single model learning (inverse). In this paper 
the second approach is adopted, and FasBack is used 
to learn direct dynamics to build the plant model, and 
inverse dynamics to build the control module. 
Adaptation of the plant model is carried out by 
learning input/output pair every time plant output is 
available. Adaptation of the controller follows a law 
similar to that proposed in (Hunt and Sbarbaro, 
1991), which in a general form is: 

Jepp ⋅⋅+=+ α)k()k( 1  
(1) 

where )k(p  is the parameter (weights) vector, e  is 

the tracking error, { }
n

m
mn u

y
j

∂
∂

==J  is the Jacobian 

matrix of the plant, calculated numerically using the 
model, and α  is an adaptation rate, which is 0.4 in 
all simulations. 
 
 

3. AIMC APPLIED TO A SIMULATED 
PENICILLIN PLANT 

 
In this section we present results of AIMC controller 
applied to the control of the biomass, one of the main 
variables in the penicillin problem. However, we 
keep in mind that the final objective of the process is 
penicillin production. It can be assumed that finding 

a good control for biomass can facilitate the control 
of penicillin production (Mou, 1979). Furthermore, it 
can also be assumed that the main control variable is 
feeding, and that biomass presents a two stage 
profile: an exponential growing stage, in which 
penicillin production can be neglected, and a 
production stage, of slow growing (Mou, 1979). 
 
In order to achieve a better knowledge of the 
penicillin problem, and as an initial approach to the 
use of adaptive IMC to the control of a penicillin 
plant, a penicillin simulator has been used to generate 
data to build FasBack modules and to replace the 
actual plant within the AIMC structure. Among the 
several models existing in the literature, Tiller model 
(Tiller et al., 1994) has been selected, because in our 
opinion, it is a good approximation to some real 
cases. It is a segregated model with parameters 
varying with time. The proposed system is not only 
able to learn parameters variation off-line during 
learning phase, but has also proved able to learn the 
effect of the time variation of some parameters in real 
time, as shown further in this section. 
 
To test controller performance it must be considered 
that not any reference can be tracked by a 
biochemical plant. Here we use a reference inspired 
in (Mou-1979), which guarantees high growing rate 
at exponential growing stage (µgr), and low growing 
rate at production stage (µpr). Mathematically: 
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(2) 
where ∆Xpr is the total growing expected in the 
production stage, and t1=25 is the time of change 
from the growing to the production stage. Due 
confidenciality reasons values of some parameters 
and plots are scaled in [0,1], both in the simulated 
and the real cases. 
 
Before testing FasBack AIMC structure to control the 
simulator, a PID control was studied, according to 
the methodology proposed by Boskovic and 
Narendra (1995), in which simple controllers should 
be discarded before trying complex ones. Results of 
PID control are shown in figure 2 where the tracking 
is not good and the feeding law is not physically 
feasible. Increasing the derivative gain would lead to 
a better tracking but a rougher feeding law, even less 
feasible. Decreasing the derivative gain allows to 
find a feasible feeding, but with a very late tracking, 
thus strongly influencing penicillin production.  
 
As seen in (Boskovic and Narendra, 1995) for an 
alcoholic fermentation, when the plant is complex 
and realistic (non linear, noise, time variant 
parameters) a PID control is not satisfactory, and 
more elaborated controllers should be used. In this 
sense the AIMC structure was applied. To identify 



direct and inverse dynamics, 30 fermentations were 
generated, in which feeding law was selected 
randomly within bounds suggested by experience, 
and the rest of the input laws were kept fixed among 
fermentations. Gaussian noise was added to the 
output, with 0.1% amplitude for gas measurements, 
and 5% for laboratory analyses. Furthermore, 
although simulator can provide a continuous 
measurement of any variable, laboratory variables 
were down-sampled to realistic rates, and then 
interpolated, to have a more accurate approach to 
results that will be obtained when using real data, 
which are shown in next section. 
 
Direct and inverse dynamics were learned using two 
FasBack neural networks with 10 training cycles 
(each of 30 fermentations of 240 instants). For direct 
dynamics F(t), CPR(t), CPR(t-1) and CPR(t-2) were 
used to predict X(t+1), and for inverse dynamics 
X(t+1), CPR(t), CPR(t-1), and CPR(t-2) were used to 
estimate F(t+1), where X is the biomass 
concentration, CPR is the carbon dioxide production 
rate, and F is the sugar flow rate. 
 
After training, the controller and model modules 
were generated using 50 nodes in ARTA and 39 in 
ARTB for the controller, and 47 nodes in ARTA and 
34 in ARTB for the model. Satisfactory direct and 

inverse results permit to build an AIMC strategy 
using these two modules. However the fact that the 
model reflects a general behaviour of the plant, rather 
than being accurately describing the actual plant, 
influences negatively control performance, and can 
be corrected by enabling adaptation, as shown in 
figure 3. 
 
A more realistic approach can be made in the case of 
presence of noise in plant output. To test this the 
same experiments were run adding 5% gaussian 
noise to biomass laboratory measurements, and 0.1% 
gaussian noise to CPR measurement provided in 
reality by a gas spectrometer. Control results in 
figure 4 show AIMC capabilities to compensate noise 
in the output. 
 
It is also interesting, to simulate the influence of cell 
damage by lysis and shear forces (Tiller et al., 1994) 
and test on-line adaptation capability of the proposed 
system. It has been roughly assumed that these 
effects influence mainly biomass yield on sugar ( XSY  
in (Tiller et al., 1994)), supposing that it decreases 
from 0.5 g/g at time 100 to 0.1 g/g at the end of the 
fermentation. Results showed a better tracking of 
reference in adaptive case (figure 5) to obtain a 
similar penicillin production, whilst control law is 
smaller and smoother. 
 

 
Fig. 5. AIMC for a time varying plant  

Fig. 2. PID control of the biomass. '+' signs show
actual output at 8 time units sampling interval,
and solid is the reference. 

 

Fig. 3. AIMC for  the nominal plant. 

Fig. 4. AIMC for the nominal plant when there is 5%
noise in the measurement of biomass and 0.1%
noise in the measurement of CPR. 



4. AIMC WITH FasBack MODULES TRAINED 
WITH REAL DATA 

 
One of the main problems to develop and test 
controllers is the necessity of a good mathematical 
model of the process, in order to test controller 
performance prior to actual implantation in industrial 
plant. However, biochemical processes are non-linear 
problems with time varying parameters, for which 
mathematical models are difficult and expensive to 
construct. Several approaches can be found in the 
literature (Tiller et al., 1994) but they are very 
sensible in their parameters, i.e. parameters are 
conditions dependent (strain, type of feed...). Neuro-
fuzzy systems are good candidates to replace 
mathematical models, due to the fact that 
performance equations need not be derived, 
parameters are automatically tuned by learning 
algorithm and empirical knowledge from experts can 
be added by the use of fuzzy rules. In this sense it 
was develop here a FasBack plant using real data 
collected from 8 standard fermentations. In these data 
sets continuous measurements are taken eight times 
faster than biomass measurements. This plant has 
feeding and state variables as inputs and produces 
biomass and state variables as outputs. To build the 
AIMC, the model and the inverse model were built 
using real data from the pilot plant. The model 
obtains biomass from feeding actions and state 
variables, and the inverse calculates feeding actions 
from reference biomass and state variables. 
Identification of unseen data is shown in figure 6, for 
one fermentation. 
 
To follow a similar reference to equation 2, 
performance is satisfactory, and adaptation improves 
performance due to the refinement of both FasBack 
modules, as seen in figure 7. 
 
In order to test performance in a plant with time 
varying parameters, we introduced a modification in 
the plant to reflect a gradual degradation of the yield 
of biomass in the feeding, as we did parametrically 

with simulated data. This negative effect can be 
solved enabling adaptation. Results are shown in 
figure 8 where tracking is achieved by increasing the 
main feeding. 
 
Finally, noise influence is studied by adding 5% 
noise to the output of the plant. As posed in previous 
sections, AIMC show good noise rejection. It can 
also be seen in figure 9 how low level noise does not 
affect negatively adaptive IMC performance. 
 

 
Fig. 7. AIMC for the nominal FasBack plant. 
 

 
Fig. 8. AIMC for a time varying FasBack plant. 
 

 
Fig. 9. AIMC for the nominal FasBack plant when 

there is 5% noise in the measurement of 
biomass. 

 

 
Fig. 6. Biomass identification (top) and inverse

model prediction (bottom) for data from a real
fermentation. 



5. CONCLUSIONS 
 

In this paper, FasBack neuro-fuzzy system has been 
applied within an AIMC strategy in the problem of 
penicillin production. Such a problem is highly non 
linear, has time varying parameters, presents high 
levels of noise in the measurements, and suffers from 
a lack of good mathematical models considering the 
variability of the process. To solve this problems, 
IMC structure presents noise rejection, and can be 
easily extended to non linear problems with the use 
of FasBack neuro-fuzzy system. Furthermore, the use 
of this neural architecture is also a solution for the 
difficult task of building model and control modules, 
due to its fast stable learning from examples and 
good performance in plant identification. 
 
In addition, on-line adaptive capability of FasBack 
has been used to add this feature to AIMC strategy, 
obtaining good results both in the case of the direct 
or inverse model are not accurate, and in the case of 
plant parameters varying with time, one of the 
fundamental difficulties of the biochemical problem. 
Application of FasBack based AIMC to a simulated 
penicillin plant has been very satisfactory, in the 
realistic cases of laboratory measurements are not 
available as often as control signal is required, there 
is presence of noise in plant output, and plant 
parameters vary with time. Furthermore, as a closer 
approach to real plant control, real data has been used 
to develop plant and inverse plant models, with 
satisfactory identification. These results suggest a 
simple efficient control strategy that can be of 
industrial interest if results can be extrapolated to a 
real plant. In this sense, the inclusion of experience 
based rules coming from the industry would facilitate 
the development of AIMC modules. FasBack, as a 
fuzzy system, presents the possibility of inclusion 
and manipulation of experts linguistic rules together 
with knowledge extracted from examples, and the 
interpretability of learned knowledge in terms of 
fuzzy rules. This is expected to be of use in the future 
application of this control strategy to a real pilot 
plant, which is the next objective of this research. 
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