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Abstract. This paper introduces the use of FasBack neuro-fuzzy system for the 
identification and control of non linear MIMO plants within IMC scheme. FasBack 
presents fast stable learning guided by matching and error minimisation, and 
presents good MIMO identification performance. Emphasis is made on the on-line 
adaptive capability of FasBack that can be used to develop adaptive IMC strategies, 
which are of interest in the cases of badly learned dynamics or plant parameters 
varying with time. Results for the control of a theoretical non linear MIMO plant 
from the literature reveal satisfactory performance for static model and controller, 
while performance is improved if adaptation is enabled. In addition, the control of a 
simulated penicillin plant is studied under several realistic conditions, in which 
adaptation shows to improve performance. 
Keywords: Adaptive IMC, non linear MIMO plants, penicillin simulated plant, 
FasBack, fuzzy neural networks 

 
 

1. Introduction 
 
Chemical and biochemical processes are very difficult to control due to their strong non 
linear dynamics and time varying parameters. Moreover, chemical and biochemical 
products have a significant added value. For these reasons during the last decades many 
researches have been making a careful laboratory study of these processes ([14] and [17] 
are some studies of penicillin production). These studies were aimed to achieve better 
knowledge of process dynamics develop specialised instrumentation. 

Dealing with non linear systems with variable parameters is a most difficult task in 
the systems control field. Traditional approach has been to search for an equivalent linear 
system, i.e. most conventional controllers employ techniques where control parameters are 
adjusted according to a linearization of the system transfer function near its equilibrium 
state, in such a way that the equilibrium state is an attractor of the state space of the system. 
Processing of nonlinearities is avoided due to its complex mathematical nature. Thus, well 
known techniques from linear systems theory may be used. This solution simplifies 
considerably the problem, although loss of information may be critical in many cases 
because in the case of large perturbations and non linear discontinuous transfer functions 
(usual for chemical and biochemical processes), the system may fall far outside the 
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equilibrium state, and control based on linearization around equilibrium point usually fails. 
IMC structure permits a rational control design procedure, allowing considering 

control quality and robustness in design decisions [10], and it has been proved that it can be 
easily extended to control of non linear plants [8]. If analytical models are not available, 
numerical methods may be used, among which neural networks provide a solution to build 
model and control modules by learning direct and inverse dynamics, and are well suited for 
non linear plant identification. FasBack [5] neuro-fuzzy system feature fast stable learning 
guided by matching and error minimisation, fuzzy representation of the knowledge which 
allows the inclusion of expert rules, and good MIMO identification performance which 
makes it very appropriate for building IMC strategies. Furthermore, FasBack on-line stable 
adaptation capabilities permit the design of an adaptive IMC, which is of interest in the case 
of badly learned dynamics due to the lack of data, or time varying plants. 

The rest of this paper is organised as follows: Section 2 briefly describes FasBack 
neural network features. Section 3 describes IMC strategy pointing out the ways to obtain 
model and control modules. Also FasBack adaptation capabilities to integrate it into an 
adaptive IMC strategy are commented. Section 4 presents experimental results on a 
theoretical MIMO plant proposed in [16]. Section 5 studies identification and control 
performance of a simulated [17] penicillin plant, showing results for realistic scenarios in 
which plant output measurements are taken at a lower rate than control action requires, 
there is noise present in output measurements and plant is time varying. Finally, section 6 
presents the conclusions. 
 
 
2. FasBack: a fuzzy neural network that allows fast stable on-line adaptation 
 
FasBack architecture [5] is a hybrid system based on Adaptive Resonance Theory (ART) 
[11] family of neural networks combining the advantages of fuzzy sets theory [19]. It is 
initially based on Fuzzy ARTMAP [7] architecture, which has two unsupervised modules 
(ARTA and ARTB) which cluster input and output, while another module contains the 
relations between them. FasArt neural network [2] was proposed to overcome the several 
ambiguities observed on Fuzzy ARTMAP supervised neural networks, by the introduction 
of fuzzy logic in a formal way, so that learning is equivalent to generating a base of fuzzy 
rules, and prediction as the use of a fuzzy inference engine with these rules to relate input to 
output. Due to the duality between neural network and fuzzy system present in FasArt, the 
universal approximation principle can be applied, ensuring that there exists a set of rules 
that allow the system to approximate any function to any given accuracy [18]. Also due to 
this duality, inversion of the rules is straightforward, i.e. inversion of the model can be 
made by reverting the knowledge of direct dynamics. Furthermore, in [6] rules partial 
inversion is used, in which the consequents (outputs) and some of the antecedents (state 
variables) are used to obtain the rest of the antecedents (control signals). 

Besides these improvements, FasBack makes use of backpropagation algorithm [15] 
to refine learning in order to reduce global error, by locally refining the least or worse 
learned input/output relations. This is carried out by using the descending gradient method, 
which vary parameters (weights) in the direction indicated by the index derivative of error 
with respect to the parameters vector [18]. Furthermore, a penalty method is used to reduce 
the influence of (maybe temporarily) wrong rules, although these rules are not completely 
forgotten and can be recalled if they become valid again. Due to the fact that this refining is 
local, and wrong rules are not forgotten completely, adaptation is stable and can be carried 
out on line, without the need of storing previously learned patterns, as it would be the case 
with multilayer perceptrons using backpropagation learning algorithm. In section 3 it will 
be pointed out how adaptation is made for the two FasBack networks involved in an IMC 
structure, which is rather different for the control module. 

FasBack is characterised by several sintony parameters, which have clear physical 
meaning. Among them the most important are vigilance parameters ρA,B which show how 
fine clustering of output and output, and γ A,B which is a fuzzification rate indicating how 
fuzzy or crisp input and output sets generated should be. 



3. Internal Model Control (IMC) 
 
IMC structure permits a rational control design procedure, allowing considering control 
quality and robustness in design decisions [10]. This has made IMC structure attractive for 
many industrial applications. 
 
3.1. Description 
 
IMC can be considered as a derivation from feedback control simply by subtracting and 
adding the effect of the control signal m on the measurement signal yielding an entirely 
equivalent setup [10]. If we consider a new controller Gc representing a controller C with 
model feedback (equation 1), the basic IMC structure is obtained, as shown in figure 1. 
 G

C
CGC = +1

 (1) 

Therefore, any conventional feedback controller C can be structured in the way an 
IMC is built. Conversely, any IMC can be converted into feedback form, by selecting a 
feedback controller C of the form: 
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G
G G

C

C
=
-1

 (2) 

Although both structures can be interchanged, the design of a controller Gc, 
associated to IMC structure is easier than the design of the controller C associated to a 
feedback structure. Furthermore, IMC structure allows including explicitly robustness as a 
design objective, due to the special kind of feedback signal d, given by equation 3. 
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which in the case of perfect model (G = G) corresponds to the disturbance d, while in the 
case of a feedback controller, feedback signal d, is the perturbed output of the system y. It 
therefore can be shown [10] that IMCs have the following properties: 

Dual Stability: If the model is perfect (G = G), the IMC closed-loop is stable if the 
controller Gc and the plant G, are stable. 

Perfect Control: If the controller is equal to the inverse model (G Gc =
- 1), and the 

IMC closed-loop is stable, then y(t) = ys(t) for all t > 0 and all disturbances d(t). 
Zero Offset: If the steady-state gain of the controller is equal to the inverse of the 

model gain (G Gc ( ) ( )0 01= - ) and the IMC closed-loop is stable, then for asymptotically 
constant set points and disturbances, there will be no offset ( s

t
y)t(ylim =

∞→
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3.2. Generalisation to non linear MIMO systems 
 
To make IMC useful for industrial applications, we should extend it to non linear systems 
control. In [8] it has been shown that IMC can be applied to non linear plants with the 
restrictions that with non linear systems, operations from linear blocks algebra are not 
generally valid, and the effect of disturbances (which for linear systems can be considered 
as an addition d to output y due to superimposition principle) cannot be considered as 
additive, an therefore not measured disturbances will lead to differences between the model 
and the plant. 

 
Figure 1: Basic IMC structure [10]. 
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In addition, considering that many industrial processes are multivariate, it becomes 
necessary to generalise IMC strategy to such processes. In [9] this kind of application is 
proposed by the so-called Multiloop Design Procedure. This consists in partitioning MIMO 
system into input/output pairs, and employing a series of SISO controllers to control each 
pair. The multiloop IMC structure is postulated by selecting the controller Gc and the 
process model G to be diagonal transfer matrices. However, in section 4 we will show that 
pure MIMO IMC can be applied to multivariate non linear processes with satisfactory 
results. 
 
3.3. IMC implementation using FasBack neuro-fuzzy system 
 
The main modules necessary for implementation of IMC are a model of the plant to be 
controlled, and the actual controller, which most often is related to an inverse model of the 
plant. As shown in the following sections, FasBack is specially adapted to build such 
modules. Although in many practical applications it will be necessary to use additional 
blocks, such as filters and reference generators, here these will be left off. 

Model: The model must capture direct dynamics of the plant. In the case of well 
known dynamics, a mathematical model of the plant can be developed, although this can be 
costly and inaccurate in many industrial plants. If there are not analytic models available, 
numerical techniques for system identification can be used. If the plant is linear (or 
approximately linear), autoregressive statistical techniques can be used, such as ARX and 
ARMAX models, Box-Jenkins techniques, etc. Neural networks can be considered as a 
particular case of non linear numerical methods, consisting of learning associations of plant 
input/output pairs. In addition, fuzzy logic can be helpful to integrate experts knowledge 
into a plant model, either by numerical techniques or, more usually, by neural techniques. 
In this case, hybrid neuro-fuzzy models are obtained, as for example using FasArt [2] [4] 
and FasBack [5] architectures. 

Model inversion: Before building the inverse model it must be considered that it is 
not always possible, due to the fact that either the inverse does not exist, or even if it exists 
its implementation is not physically possible. Some reasons for this are: the model is a non 
minimum phase model, a model with time delays, or using the inverse of the model will 
require high gain loops. 

If the model G is linear and can it be inverted, then the calculation of its inverse G - 1 
by analytic means is immediate. Furthermore, even if the model is not linear there exist 
analytic methods to obtain the inverse, such as Hirshorn method [12], although it is 
sensitive to noise and numerical errors and therefore not recommended [8]. A serious 
inconvenience of these methods is the actual knowledge of an analytic model, which is 
seldom feasible in practice. On the other hand, if the model G is linear but presents 
inversion difficulties (it is non minimum phase, has time delays or requires high gain loops) 
an approximate inverse can be obtained. Some techniques for this are proposed in [10]. 

However, in most practical cases an analytical model is not available. Here neural 
networks can be used to learn inverse dynamics, using as input to the neural network the 
output of the system, and as supervision the inputs of the system, either in the expected 
operational range of the plant [13], or in the whole operating space. FasBack neuro-fuzzy 
systems can be used within both strategies, by using incremental learning to locally refine 
the general inverse model. Furthermore, fuzzy rules inversion can be applied to rules 
extracted from FasBack weights, as shown in [3]. In the present paper, FasBack neural 
network is introduced into IMC structure to construct an adaptive strategy. Adaptation of 
the model is carried out by learning input/output pair at each cycle. Adaptation of the 
controller follows a law similar to that proposed in [13], which in a general form is: 
 Je)k(p)k(p ⋅⋅+=+ α1  (4) 

where )k(p  is the parameter (weights) vector, e  is the tracking error, { }
n

m
mn u

y
jJ

∂
∂

==  is the 

Jacobian matrix of the plant, calculated numerically using the model, and α  is an 
adaptation rate, which is 0.4 in all simulations. 



4. Identification and control of a theoretical non linear MIMO plant 
 
To study the performance of the proposed IMC strategy using FasBack adaptive neuro-
fuzzy system, the identification and control of the following non linear MIMO plant 
proposed in [16], and also used in [18], is studied: 
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Although it is possible identify and control this system like two SISO systems and 

assuming it is known the additive effect of control signals, like in [16], we shall illustrate 
capabilities of neuro fuzzy systems in a more general manner: Applying a MIMO strategy 
without suppositions on system structure, the more general non linear MIMO system 
r r r ry k f y k u kp p( ) ( ( ), ( ))+ =1  is obtained. To apply IMC strategy model and control modules 

must be trained. For building model module, plant is excited with random control signals u1 
and u2 normally distributed [-1, 1] to obtain 5000 samples of the form: 
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A FasBack network (with parameters ρA=0.3, ρB=0.4, γA=5 and γB=10) was trained 

over 10 cycles for these 5000 samples to learn direct dynamic of the plant 
r r r r$ ( ) $( ( ), ( ))y k f y k u kp p+ =1 , using 103 nodes in ARTA, and 13 in ARTB. To test identification 

performance the plant is excited with an input vector [ ]Tkksin )252cos( ),252( ππ  (like in [16]), 
obtaining results show in figure 2(a), which are similar to those achieved in [16], but using 
only 5000 samples instead on 100000, and no a priori knowledge of the plant structure. 

To implement the IMC controller it is also necessary to develop a controller module, 
which is achieved through a FasBack network with the same parameters, by learning 
inverse dynamic with patterns of the general form: 
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Identification performance is tested estimating the control signal that would produce 

the actual output of the previous test, i.e. ideal output of controller module would be the 
aforementioned control law [ ]Tkksin )252cos( ),252( ππ . Results are shown in figure 2(b), 
where it can be easily appreciated that identification of inverse dynamics is worse than that 
of direct dynamic. This is due to the fact that samples in training set for inverse dynamics 
learning do not cover thoroughly the output variation space, and also to the compromise 
problem between different possible control actions needed to achieve a given plant output. 

Worse identification of inverse dynamics will result in a poor control result, which 
can be solved enabling adaptive capabilities of neural networks involved in IMC strategy. 
In figure 3(a) control results are shown for the non adaptive IMC strategy with the model 
and controller model previously built, to track trigonometric references 
[ ]Tkksin )252cos( ),252( ππ  as in [16]. It can be seen that performance is not very satisfactory, 
especially for variable 2py , due to the bad inverse dynamics learning achieved. To improve 
the learning of the control operation space we enabled adaptive capabilities of the neural 
networks involved in the IMC, resulting into progressively improved control performance, 
as shown in figure 3(b). 
 



(a) (b) 
Figure 2: Identification of (a) direct dynamics ( piy and piŷ ), using 242 nodes in ARTA and 25 in ARTB. (b) 

inverse dynamics ( piu and piu ) using 242 nodes in ARTA and 25 in ARTB. 
 

(a) (b) 
Figure 3: Control of MIMO plant for references [ ]Tkksin )252cos( ),252( ππ  when (a) adaptation is not 
enabled (b) adaptation is enabled, and control performance improves with time. In this case, used nodes did 
not increase. 

 
Results after time of adaptation are similar to those shown in [16], but with the more 

general strategy that does not make assumptions about the plant structure. Although in this 
particular case of a theoretical plant this fact is not very important, in industrial cases this is 
a major concern. For example in [1] a biochemical (sacharomyces cerevisae fermentation) 
problem is presented, where in the unrealistic case of a totally known plant, a PID 
controller performs better that advanced control strategies, but when less suppositions about 
plant dynamics are made, the less structured controllers give better results. In the following 
section, this philosophy will be illustrated with another biochemical problem. 

All simulations were run under MATLAB 5.1 on a Pentium 166 MHz computer, 
and off-line leaning time was around 1 minute. Each test experiment took around 15 
seconds in non adaptive cases and 30 in adaptive cases. 
 
 
5. Identification and control of a simulated penicillin plant 
 
Traditionally the application of complicated mathematical models to control and track the 
fermentation has been used. Generally, the biological systems are so complex that results 
have not been too brilliant. The non linearity, variation of the parameters with time, 
difficulty and impossibility of measuring many of the variables involved make it very 



difficult to fit a model within the traditional control systems. To test FasBack based IMC 
system, to work on a penicillin problem it has been initially decided to work on simulated 
data. Among the several models existing in the literature Tiller model [17] has been 
selected, because in opinion of Antibióticos, S.A. (León, Spain) industrial experts it is a 
good approximation to real cases. It is a segregated model with parameters varying along 
time. The proposed system is not only able to learn parameters variation off-line during 
learning phase, but has also proved able to learn the effect of the time variation of some 
parameters in real time, as shown further in this section. 

To identify direct and inverse dynamics, we generated 30 fermentations each of 
them during 240 hours, in which feeding law was selected randomly within bound 
suggested by experience, as shown in figure 4(a), and the rest of the input laws were kept 
fixed among fermentations. Gaussian noise was added to the output of 0.1% amplitude to 
gas measurements, and 5% to laboratory analysis. Furthermore, although simulator 
provides measurements of any variable every hour, laboratory variables were down-
sampled to realistic rates, and then interpolated, to have a more accurate approach to results 
that would be obtained when training with real data.  

Direct and inverse dynamics were learned using two FasBack neural networks with 
10 training cycles (each of 30 fermentations of 240 points). For direct dynamics ( )tF , 

( )tCPR , ( )1−tCPR , and ( )2−tCPR  were used to predict ( )1+tX , and for inverse dynamics 
( )1+tX , ( )tCPR , ( )1−tCPR , and ( )2−tCPR  were used to estimate ( )1+tF , where X  is the 

biomass concentration l/g , CPR  is the carbon dioxide production rate in )sl/(g ⋅ ,  and F  
is the sugar flow rate, measured in litters of water per second, assuming that a constant 
concentration of sugar is present in the flow. In results presented in this section also the 
penicillin concentration P is also shown, measured in l/g . 

After training, the controller and model modules were generated using 50 nodes in 
ARTA and 39 in ARTB for the controller, and 47 nodes in ARTA and 34 in ARTB for the 
model. Satisfactory identification results, as shown in figure 4(b), permit us to build an 
IMC strategy using these two modules. 

To test controller performance it must be considered that not any reference can be 
tracked by a biochemical plant. Here we use a reference inspired in [14], which guarantees 
high growing rate at exponential growing stage ( grµ ), low growing rate at production stage 
( prµ ), and soft transition between those to rates. Mathematically: 
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where 1120 −= h.grµ , 10450 −= h.prµ , lgX pr 15=∆  is the total growing expected in the 
production stage, and ht 251 = is the time of change from the growing to the production 
stage. 

(a) 
 

(b) 
Figure 4. (a) Example of random feeding law use to simulate fermentations using the Tiller model, and 
bounds for randomly generated feeding laws. (b) Identification of a fermentation using a FasBack neural 
network which has learnt direct dynamics. 



(a) (b) 
Figure 5. Control of the nominal plant when (a) biomass is measured every hour, (b) biomass is measured 
every eight hours. In this case, marks on the model error plot show error values that are fedback to the 
controller. 

 

(a) (b) 
Figure 6. Control of the nominal plant with adaptation of the model and the controller when (a) biomass is 
measured every hour (model nodes increased to 50 in ARTA and 35 in ARTB (b) biomass is measured every 
eight hours (model nodes increased to 48 in ARTA). In this case, marks on the model error plot show errors 
fedback to the controller. 

 
Control performance is shown in figure 5(a) in the unrealistic case of measuring 

biomass every hour, which is the control action rate. In a more realistic case biomass is 
measured every eight hours. In figure 5(b) it can be appreciated that this restriction does not 
affect performance, which is satisfactory. However, the fact that the model reflects a 
general behaviour of the plant, rather than being accurately describing the actual plant, 
influences negatively control performance. This can be corrected by enabling adaptation, as 
shown in figure 6. 

A more realistic approach can be made in the case of presence of noise in plant 
output. To test this the same experiments were run adding 5% gaussian noise to biomass 
laboratory measurements, and 0.1% gaussian noise to CPR measurement provided in 
reality by a gas spectrometer. Control results in figure 7 show IMC capabilities to 
compensate noise in the output, for the same reference shown in equation 5. 

To simulate the influence of cell damage by lysis and shear forces [17] and test on-
line adaptation capability of the proposed system, it has been roughly assumed that these 
effects influence mainly biomass yield on sugar ( XSY  in [17]), supposing that it decreases 
from 0.5 g/g at time 100 hours to 0.1 g/g at the end of the fermentation. Results (figure 8) 
show a better tracking of reference in adaptive case to obtain a similar penicillin 
production, whilst control law is smaller and smoother. 
 



(a) (b) 
Figure 7. Control of the nominal plant when there is 5% noise in the measurement of biomass and 0.1% noise 
in the measurement of CPR and (a) adaptation is not used and (b) adaptation of the model and the controller 
is applied. In both cases biomass is only measured every eight hours 

 

(a) (b) 
Figure 8. Control of a time varying plant where XSY  decreases from 0.5 g/g at time 100 hours to 0.1 g/g at 
the end of the fermentation. (a) Without adaptation, (b) with adaptation. In both cases biomass is only 
measured every eight hours 

 
6. Conclusions 
 
In this paper, FasBack neuro-fuzzy system has been introduced into IMC strategy. While 
IMC is an efficient, stable control strategy that can be easily extended to non linear MIMO 
problems, FasBack is a solution for the difficult task of building model and control 
modules, due to its fast stable learning from examples and good performance in MIMO 
plants identification. This have been seen as applied to a MIMO plant from the literature, 
where MIMO identification performed similarly to two MISO backpropagation models, 
with much less training samples and computational effort. Another feature of FasBack, as a 
fuzzy system, is the possibility of inclusion of experts linguistic rules together with 
knowledge extracted from examples, and the interpretability of learned knowledge in terms 
of fuzzy rules. This has not been exploited in this paper but is of interest for future research. 

Furthermore, on-line adaptive capability of FasBack has been used to add this 
feature to IMC strategy, obtaining good results both in the case of the direct or inverse 
model are not accurate, and in the case of plant parameters varying with time. Application 
of FasBack based IMC to a simulated penicillin plant has been very satisfactory, in the 
realistic cases of laboratory measurements are not available as often as control signal is 
required, there is presence of noise in plant output, and plant parameters vary with time. 
These results suggest a simple efficient control strategy that can be of industrial interest if 
results can be extrapolated to a real plant instead of a simulated one. 



References 
 
[1] Boskovic J.D. and Narendra K.S., “Comparison of linear, Nonlinear and Neural-network-based Adaptive 

Controllers for a Class of Fed-batch Fermentation Processes”, Automatica, vol. 31, no. 6, pp. 817-840, 
1995. 

[2] Cano J.M., Dimitriadis Y.A., Araúzo M.J. and López J., “FasArt: A New Neuro-Fuzzy Architecture for 
Incremental Learning in System Identification”, 13th World Congress of IFAC International Federation 
of Automatic Control, vol. F, pp. 133-138. San Francisco, CA, USA. June 30 - July 5, 1996. 

[3] Cano J. M., Dimitriadis Y. A., Araúzo M. J., Abajo F. and López J. “A Neuro-fuzzy Architecture for 
Automatic Development of Fuzzy Controllers”, CESA/96, Lille, France, vol 2, pp. 1187-1192, April 
1996. 

[4] Cano J. M., Dimitriadis Y. A., Araúzo M. J., Abajo F. and López J. “Fuzzy Adaptive System ART-
based: Theory and Application to Identification of Biochemical Systems”, CESA/96, Lille, France, vol 
2, pp. 918-923, April 1996. 

[5] Cano J.M. Dimitriadis Y.A and López J. “FasBack: Matching-error based learning for automatic 
generation of fuzzy logic systems”, FUZZ-IEEE, Barcelona, Spain, 1997. 

[6] Cano J.M., Araúzo M.J., Y.A. Dimitriadis y López J., “Non linear processes adaptive control using 
fuzzy neural systems”, EUFIC'97 5th European Congress on Intelligent Techniques and Soft Computing, 
Aachen, Germany. September 8-12, 1997. 

[7] Carpenter G., Grossberg S., Markuzon and N., Reynolds J. "Fuzzy ARTMAP: A Neural network 
architecture for incremental supervised learning of analog multidimensional maps" IEEE Transactions 
on Neural Networks, vol. 3, pp 698-713, 1992. 

[8] Economou C. G., Morari M. and Piasson B. O., “Internal Model Control. 5. Extension to Nonlinear 
Systems”, Industrial Engineering Chemical Process Design and Development, no. 25, pp. 404-411, 
American Chemical Society, 1986. 

[9] Economou C. G. and Morari M., “Internal Model Control. 6. Multiloop Design”, Industrial Engineering 
Chemical Process Design and Development, no. 25, pp. 411-419, American Chemical Society, 1986. 

[10] Garcia C. E. and Morari M., “Internal Model Control. 1. A Unifying Review and Some New Results”, 
Industrial Engineering Chemical Process Design and Development, no. 21, pp. 308-323, American 
Chemical Society, 1982. 

[11] Grossberg, S. “Adaptive pattern classification and universal recoding. II: Feedback expectation, 
olfaction and illusions”. Biological Cybernetics, no. 23, pp. 187-202, 1976 

[12] Hirschorn R. M., IEEE Transactions on Automatic Control, vol. 24, no. 6, 1979. 
[13] Hunt K. J. and Sbarbaro D., “Neural Networks for nonlinerar internal model control”, IEE proceedings, 

vol. 138, no. 5, pp. 431-438, September 1991 
[14] Mou D. G., "Toward an Optimum Penicillin Fermentation by Monitoring and Controlling Growth trough 

Computer-aided Mass Balancing", Ph.D. Thesis, MIT, Cambridge, MA, USA, 1979 
[15] McClelland J. and Rumelhart, D. “Explorations in Parallel Distributed Processing”. vols 1 and 2. MIT 

Press, Cambridge, MA, USA, 1986 
[16] Narendra K.S. and Parthasarathy K., “Identification and Control of Dynamical Systems Using Neural 

Networks”, IEEE Transactions on Neural Networks, vol. 1, no. 1, pp. 4-27, March 1990. 
[17] Tiller V., Meyerhoff J., Sziele D., Schügerl, Bellgardt, K-H. "Segregated mathematical model for the 

fed-batch cultivation of a high-producing strain of Penicillium chrysogenum". Journal of Biotechnology, 
no 34,  pp. 119-131, 1994. 

[18] Wang L. “Adaptive Fuzzy Systems and Control”, PTR Prentice Hall, 1994. 
[19] Zadeh L. “Fuzzy Sets”. Information and Control, vol. 8, 1965 


