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Abstract

�ARTMAP is a neural network architecture that ad-

dresses the category proliferation problem present in

Fuzzy ARTMAP, by encouraging the creation of large

hyperboxes. However, under certain characteristics of

the classi�cation task, this principle can be inadequate,

namely if some class has its patterns distributed in

several isolated regions, far apart in the input space.

Here we propose Safe-�ARTMAP, a generalization of

�ARTMAP that limits the growth of a category in re-

sponse to a single pattern, so that large hyperboxes are

not created under these conditions. Experimental re-

sults con�rm that performance improves in some syn-

thetic and real world tasks.

1 Introduction

Fuzzy ARTMAP [1] is a neural network architecture ca-
pable of establishing an arbitrary mapping in response
to collections of arbitrarily complex analog input and
output patterns. This is achieved by creating self-
organized categories in the input and output spaces,
and learning the relations between them. It solves the
stability-plasticity dilemma, i.e. how to keep on learn-
ing without forgetting the knowledge already acquired,
and thus overcomes catastrophic forgetting happening
to other popular networks such as back-propagation
trained MLPs. Moreover, Fuzzy ARTMAP has been
shown to solve a number of classi�cation tasks in a fast
and e�cient way [1].

One of the advantages of Fuzzy ARTMAP is that its
weights can be easily translated into IF-THEN rules
[2], as oppossed to MLPs weights. Nevertheless, the
number of categories created during Fuzzy ARTMAP

training is usually large, thus yielding an intractable
collection of IF-THEN rules. This problem is known as
category proliferation [1, 2, 9, 6], and has been related
to several limitations of Fuzzy ARTMAP, such as the
representative ine�ciency of hyperbox categories or the
excessive triggering of the match tracking mechanism
due to noisy training patterns [9]. It is also known
that Fuzzy ARTMAP depends strongly on the order of
presentation of the training patterns, so that particular
orders will produce a larger number of categories.

Among the several approaches followed to deal with
category proliferation, �ARTMAP [5, 6] tries to re-
duce the number of commited categories by allowing
them to be as large as possible, restricted to achieve
a certain accuracy in the mapping. However, this ap-
proach can be inappropiate if some class has its pat-
ternd distributed in several regions in the intput space.
Under these conditions, the creation of large categories
that link them will also imply an increase of the over-
lap between categories, and presumably a decrease in
accuracy. As a result, �ARTMAP will devote more
training epochs to reduce this e�ect, generally creating
small unnecessary categories. This is quite noticeably
if there are some outliers in the training data, since
�ARTMAP will enlarge the categories to cover the out-
liers. Moreover, if the input space is scarcely sampled,
creating large categories implies a signi�cant and arbi-
trary generalization, i.e. it is inferred that patterns in
certain regions of the input space are mapped to certain
classes without any evidence from the training data.
This paper discusses a variation of �ARTMAP, called
Safe-�ARTMAP, that still tries to create large cate-
gories, but checking if all the patterns that they cover
are close enough, i.e. not allowing large categories to
jointly describe all patterns related to one class if they
are due to distant sources in the input space.
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Figure 1: Fuzzy ARTMAP architecture

The rest of this paper is organized as follows: Sections 2
and 3 will brie
y recall Fuzzy ARTMAP basics, and the
modi�cations introduced by �ARTMAP, respectively.
In section 4 Safe-�ARTMAP will be presented and dis-
cussed. The validity of this approach will be assesed on
several benchmarks in section 5. Finally section 6 will
draw the main conclusions and future research lines.

2 Fuzzy ARTMAP

Fuzzy ARTMAP architecture, shown in Fig. 1, consists
of two Fuzzy ART modules linked through an Inter-
ART map. The Fuzzy ART modules perform the self-
organized construction of the categories in the input
and output spaces, but if the learning task is pattern
classi�cation, the ARTb module is not necessary. The
ARTa module consists of three layers: input layer F0,
matching layer F1 and choice layer F2. In F0 the in-
put vector a is normalized by means of complementary
code, to yield I = (a; ac), where ac = 1 � a. In the
choice layer F2 the input pattern is compared to exist-
ing templates, calculating for each template j a choice
function Tj = jwj ^Ij=(�+ jwj j), where j � j denotes the
L1 norm, and ^ is the fuzzy intersection or min opera-
tor. Since the category J with highest Tj is selected to
win the competition, the choice parameter � is used to
favour the selection of small (especi�c) categories over
large (general) categories [3]. Once a template wins,
its degree of matchning to the pattern needs to be suf-
�cient to meet the match condition in F1, given by
jwJ ^ Ij=jIj � �, where � is the vigilance parameter. If
this condition is not met, category J is inhibitted and
another template is selected, or a new one commited.

The selection of a winner category J in ARTa implies
a class prediction through the inter-ART map, unless
the category has just been commited. If this prediction

does not match the correct output class, the match

tracking mechanism takes place, by both inhibitting
category J and increasing the value of the vigilance
parameter slightly above jwJ ^ Ij=jIj, so that when an-
other category is selected it will be smaller (more espe-
ci�c) than category J .

Once a category J has been selected in ARTa that
meets the vigilance criterion and predicts the correct
output class, the network enters resonance, and weights
are updated, by wnew

J = �(wold
J ^ I) + (1 � �)wold

J ,
though commonly � = 1 (then fast learning is said to
take place).

Because of the use of complementary coding, and of the
^ operator, if we denote wj = (uj ;v

c
j), then weights

wj represent a hyperbox Rj in the input space, where
uj and vj are the lower and upper corners, respectively.
Furthermore, if fast learning is used, the hyperbox Rj

contains all the training patterns that selected category
j during learning.

It is worth pointing out that Fuzzy ARTMAP can be
trained either under incremental (on-line) or batch (o�-
line) modes. If incremental learning is performed, pat-
terns are presented as they become available, and only
once. On the contrary, the batch training consists in
repeatedly presenting a collection of patterns until the
weights converge. Under fast learning conditions it
has been proven that training will be over in a �nite,
generally small, number of list presentations (epochs)
[7, 4]. Thus, though incremental learning can be im-
portant for certain applications, batch training can im-
prove performance at a small computational overhead.
Moreover, batch training can be performed initially on
a collection of stored data, and weights adapted after-
wards with fresh patterns using the incremental learn-
ing mode. This paper will only consider the batch
training mode of Fuzzy ARTMAP.

3 �ARTMAP

The match tracking mechanism allows Fuzzy ART-
MAP to detect novelties and learn them correctly, but
in the presence of noise causes the creation of many
small categories that do not necessarily improve the
performance. Moreover, the use of hyperboxes as the
descriptive elements associated to categories can be in-
e�cient because they often imply the inference of data
on their corners, and more categories may be required
to correct the prediction of these corners [9]. However,
hyperboxes have some appealing features, as they im-
pose small computational requirements, can facilitate
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convergence and ease the extraction of knowledge as
IF-THEN rules. Moreover, their number can be sig-
ni�cantly reduced by setting their possition and size
accordingly to the underlying data distribution.

�ARTMAP [5, 6] tries to reduce category proliferation
by supressing the match tracking mechanism, and cre-
ating large categories. Of course, this change implies
that some other means need to be provided to guaran-
tee accuracy. In �ARTMAP, an inter-ART reset signal
is preserved from the original Fuzzy ARTMAP archi-
tecture, i.e. nodes in ARTa can be inhibitted by a signal
comming from the inter-ART map, but the vigilance
parameter � will not be raised. In addition, a batch
training is carried out, with an evaluation at the end of
each iteration of the precission achieved on the train-
ing data, as to determine if further epochs are required
with more restrivtive vigilance values.

Though complete details can be found in [6],
�ARTMAP algorithm is brie
y described here.
�ARTMAP introduces a vigilance parameter �j for
each category in ARTa, and replaces the inter-ART
map by a probabilistic map given by weights pjk and
Pjk , that link unit j in ARTa and unit k in ARTb, and

weights pj =
PNb

k=1 pjk and Pj =
PNb

k=1 Pjk that re
ect
the probabilistic importance of unit j. All are initial-
ized to 0. User parameters hmax, Hmax and �� must
be provided. Then the training proceeds in repeated
iterations trhough the following two steps.

� Step 1. Patterns in the training set are pre-
sented to the network. For each of them, win-
ners j and k are selected in ARTa and ARTb,
and if some unit j becomes newly committed,
�j = ��. After winners selection, pjk are ten-
tatively updated to re
ect this association, the

quatity hj = �pj
PNb

k=1 pjk log2 pjk is computed
and compared to hmax. This quantity re
ects the
homogeneity of the classes associated to unit j.
If hmax = 0, as considered in this paper, each
ARTa category can only be related to one output
class.

If hj > hmax, then unit j is inhibited, and
changes in pjk undone, but no vigilance value is
increased. This is what is called an inter-ART
reset without match tracking. If hj < hmax then
wj weights can be updated according to Fuzzy
ART laws.

� Step 2. Patterns in the training set are pre-
sented again, but this time weights are not al-
lowed to change. This is done to evaulate the be-
haviour of the net on the training data. For each

pattern, winners j and k are selected in ARTa

and ARTb, that allow to update weights Pjk . Af-
ter all patterns have been presented, the quatity

H = �
PNa

j=1 Pj
PNb

k=1 Pjk log2 Pjk is computed
and compared to Hmax.

If H > Hmax, then the unit J with maximal
contribution to H is removed, and all the pat-
terns that selected this unit in the last list pre-
sentation are marked for being presented again.
This will give place to the creation of new cat-
egories, and to assure they will be smaller �� =
jwJ ^ Ij=jIj+��.

Due to the presence of an inter-ART mechanism,
�ARTMAP will be able to create hyperboxes inside
other hyperboxes, treating correctly the populated ex-
ceptions [6] (sets of patterns that cannot be probabilis-
tically ignored, and can be better seen as an exception

rule to a general rule). Moreover, it can allow some
training error, avoiding the commitment of small cat-
egories to correct the excess of generalization due to
hyperboxes near class boundaries, especially if they are
curve boundaries, or if classes overlap.

4 Safe-�ARTMAP

Though �ARTMAP can be a valid solution to reduce
category proliferation, as shown for a number of bench-
marks in [5, 6], it can be inappropiate under certain
conditions. If some class is distributed among several
regions, i.e. if its patterns are generated by several dis-
tant and not connected sources in the input space,
trying to create large categories will complicate the
learning and degrade performance. Consider the task
shown in Fig. 2a, where the \white" class is clearly
disperse, since its patterns can be located in 25 iso-
lated regions. If �ARTMAP tries to create large cat-
egories that join some of these \white" regions, it will
indirectly cause an inaccurate classi�cation of \black"
patterns. Therefore, more training epochs will be un-
dergone, in a computationally demanding process, and
eventually the categories created will be smaller than
required, as shown in �gure 2c.

This scenario can also occur because outliers, e.g. rare
patterns belonging to a certain class but far from all
other patterns of the same class. However, since out-
liers are probabilistically unimportant, this could be
solved by �ARTMAP with hmax > 0.

Safe-�ARTMAP is a modi�cation of �ARTMAP, that
could also be extended to Fuzzy ARTMAP in batch
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(a) (b)

(c) (d)

Figure 2: (a) A classi�cation task with one class
disperse in the input space, and the solu-
tions with fewest categories achieved by (b)
Fuzzy ARTMAP, (c) �ARTMAP and (d) Safe-
�ARTMAP

training mode, that will permit the creation of large
categories except when they are to include patterns
from distant and unconnected sources in the input
space, even if they belong to the same output class.
To achieve this objective, after a winner category j has
been selected in ARTa that meets the vigilance cri-
terion, and it has been checked that its prediction is
accepted by the inter-ART map (i.e. hj � hmax), then
the distance criterion is evaluated, imposing that if

jwj j � jwj ^ Ij

jIj
> � (1)

where 0 < � < 1 � �, then the pattern is too far from
the current possition of the category and should not
be learned by it. It can be shown that, as well as
the total category size is bounded above by M(1� �),
the change in category size due to a single pattern is
bounded above by M�.

Though a pattern may not meet the distance criterion,
the category j may eventually grow to a point where
equation (1) would be satis�ed. Therefore, it seems
convenient to leave the network weights unchanged and
save this pattern for future presentation. Therefore,
several passes through the training pairs are required
to complete a single epoch (considering an epoch one
list presentation in which all pairs are actually learned
by the network). In successive passes more patterns

will be learned, eventually all of them. But it may
well occur that some patterns never meet equation (1)
with any of the existing categories, j = 1; : : : ; Na. This
is because they are far apart from existing categories
associated to the same class, and in this case, a new
category can be commited by a especial signal. There-
fore, large categories will be created if all the training
patterns associated to them are somewhat connected.
On the contrary, several categories will cover patterns
generated by clearly separated sources.

To summarize, letting P denote the set of training pairs
remaining to be presented to the network, the whole
training process can be described as follows:

� Step 1. Initialize P to the whole collection of
input/output pairs

{ Step 1a. For each of the patterns in P ;
present it to the network. It can either be
learned by the network or remain in P .

{ Step 1b. If P is empty, then the epoch is
complete. Move to Step 2.

{ Step 1c. If P is not empty, and the number
of pairs decreased in this pass through data,
some patterns have been learned. Then
some categories may have changed and thus
some of the remaining patterns could be
learned in another pass. Go to Step 1a.

{ Step 1d. If P is not empty, but the number
of pairs in it is the same as in previous pass,
then inhibitt all categories and present one
pattern from P . This forces the creation of
a new category. For the remaining patterns
in P go to Step 1a.

� Step 2. Evaluate the total entropy H as de-
scribed above for �ARTMAP, and if necessary
go again to Step 1.

It is worth mentioning that if � = 1 any pattern can
be learned by any category, and thus Safe-�ARTMAP
reduces to �ARTMAP.

5 Experimental results

In order to assess the performance of the di�erent ar-
chitectures, several benchmarks are considered. First,
Fig. 2 shows a synthetic benchmark in which one of the
classes is very disperse. This will cause a degradation in
�ARTMAP's performance, as discussed above. In ad-
dition, the circle-in-the-square problem [1], commonly

1200



Table 1: Training and generalization results for the clas-
si�cation task shown in Figure 2, averaged over
10 simulations
Architecture #Cat Error

Fuzzy ARTMAP 62.0 14.03%
�ARTMAP 41.1 13.29%
Safe-�ARTMAP 26.0 6.74%

used in the ART literature, will be used to ilustrate how
outliers can a�ect �ARTMAP's performance, and how
this e�ect can be di�erently overcome by an adequate
selection of hmax or by the use of Safe-�ARTMAP. Fi-
nally, the architectures under study will be evaluated
on a real world problem from the UCI machine learn-
ing repository [8], the Pima Indians Diabetes (PID)
problem, that features high input dimensionality and
few data points for training, so that creating large cat-
egories will be possible, but at the risk of generalizing
in excess.

In all experiments the results shown are the average
of ten simulations, with di�erent training data. For
the synthetic benchmarks we generated ten 1,000-point
training sets and one 10,000-point test set, from ran-
dom sources with uniform distribution in [0; 1]� [0; 1].
For the PID database, the 768 available patterns were
split randomly into 576-point training sets and 192-
point test sets, as in [2], and this was done ten times
for the di�erent simulations. In all networks � = 0 so
that the category size was only constrained by the data,
� = 1 (fast learning), � �= 0 and �� = 0:01. Other user
parameters were selected by cross-validation on di�er-
ent data.

The results achieved for the task in Fig. 2 are shown in
Table 5, using hmax = 0 and Hmax = 0:1 and � = 0:05.
In addition, Fig. 2 shows the best result (in terms of
fewest categories) achieved by each of the networks.
This �gure illustrates why the fact that one class has
its patterns distributed in several regions a�ects both
Fuzzy ARTMAP and �ARTMAP, that tend to join
these patterns in one single category. While Fuzzy
ARTMAP solves this creating more, smaller categories,
�ARTMAP repeatedly passes trhough the data, de-
stroying and creating new categories to divide the dif-
ferent regions, but as a lateral result creating smaller
categories. On the contrary, Safe-�ARTMAP can iso-
late these regions by evaluating the distance criterion.
Of course, this is an extremely favourable case for Safe-
�ARTMAP. In general, Safe-�ARTMAP will have to
combine the use of this criterion with the evaluation
of entropy inherited from �ARTMAP, in order to solve

Table 2: Training and generalization results for the circle-
in-the-square problem, without and with noisy
samples, averaged over 10 simulations

Outliers Architecture #Cat Error

Fuzzy ARTMAP 25.2 5.70%
No �ARTMAP 9.0 5.64%

Safe-�ARTMAP 9.0 5.64%
Fuzzy ARTMAP 37.0 7.14%
�ARTMAPhmax=0 19.6 7.16%

Yes
�ARTMAPhmax=0:025 29.2 5.90%
Safe-�ARTMAP 18.5 5.87%

real problems successfully.

To study the in
uence of outliers, as a particular cause
of dispersion among patterns belonging to on class, the
circle-in-the-square problem has been considered. This
problem consists in determining wether points inside
the unit square [0; 1] � [0; 1] lie within or outside a
circle of area 1

2
centered in [ 1

2
; 1
2
]. In [6] we showed

that, on clean data, �ARTMAP clearly outperforms
Fuzzy ARTMAP, achieving smaller error rate with
far fewer categories. These results (with hmax = 0,
Hmax = 0:18) are also presented in table 5, where
� = 1 for Safe-�ARTMAP, so that in fact behaves
as �ARTMAP. However, 10 outliers were introduced
in the training data (representing 1% of them), and
�ARTMAP performance clearly degrades. This is due
to the fact that it tries to create large categories that
link the circle to the outliers, but these categories over-
lap with the \outside" class, so that several epochs re-
quired to solve this problem, and some smaller cate-
gories become commited.

However, Safe-�ARTMAP can overcome this di�culty
by creating special categories for the outliers, that are
far from the circle, and keeping the rest the same, so
that a larger number of categories is generated but
the performance is preserved. These data can also be
handled by increasing parameter hmax, so that during
learning ARTa may be mapped to more than one out-
put class. Nevertheless, though this change allows han-
dling the outliers, it also causes some categories to grow
in response to patterns with an incorrect class label.
Namely, the categories describing the class \circle" can
learn some of the patterns nearby, though they should
be mapped to the class \outside", and then further re-
�nement will be required. In summary, precission can
be kept at the cost of creating some smaller categories,
as also shown in Table 5 for �ARTMAP trained with
hmax = 0:025.
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Table 3: Training and generalization results for the PID
database, averaged over 10 simulations

Architecture #Cat Error

Fuzzy ARTMAP 48.30 32.08%
�ARTMAP 15.10 32.03%
Safe-�ARTMAP 27.50 29.48%

To complete the experimental assessment of the pro-
posed methods, the Pima Indians Diabetes database
has been selected from the machine learning repository
held at UCI [8]. It consists of the data of 768 pacients,
each characterized by 8 numeric valued features, that
should allow to determine wether a pacient develops di-
abetes. As the dimensionality of the problem is high, it
is likely that patterns corresponding to the same class
lie far apart in the input space. However, since data
is scarce, it is quite likely that these large hyperboxes
are allowed. As they are used to classify unseen data
they can make risky generalizations, and then perfor-
mance degrades. The results achieved with hmax = 0,
Hmax = 0:6 and � = 0:09, are shown in Table 5. The
intrinsic di�culty of this problem is clear from the high
error rates achieved by all networks. However, it is
clear that �ARTMAP can achieve signi�cant code com-
pression, by placing large categories in the input space.
Unfortunately, the consequence of this is that perfor-
mance degrades, as already discussed. This suspect is
con�rmed by the fact that Safe-�ARTMAP creates a
few more categories reducing the error rate in 2.5%.
Finally, we should point out that though performances
reported in [2] are better, even for Fuzzy ARTMAP,
in [2] predictions are computed after voting acrosss 20
networks, so actually the categories (rules) contribut-
ing to the prediction are 20 times as many.

6 Conclusions and future research

This paper has presented a modi�cation of �ARTMAP,
called Safe-�ARTMAP, that can enhance its perfor-
mance in particular scenarios, namely if some classes
are distributed in distant regions in the input space,
especially if dimmensionality is high. The algorithm
encourages the creation of large categories, in order to
reduce their number, but does not let them cover pat-
terns corresponding to isolated regions, distant in the
input space, even they are related to the same output
class. This is achieved by evaluating the distance cri-
terion just before learning ocurrs, so that hyperboxes
are only allowed to enlarge in response to close pat-
terns. Experimental results have shown the usefulness

of this modi�cation in some synthetic and real world
classi�cation tasks, while setting � = 1 can reduce Safe-
�ARTMAP to �ARTMAP when ceonvenient.

These ideas could also be extended to Fuzzy ARTMAP.
However, it can be expected that its generalization per-
formance will not be signi�cantly a�ected, because the
match tracking mechanism helps to handle disperse
classes correctly, though generally at the cost of cre-
ating many small categories. Despite of that, the eval-
uation of the distance criterion causes a kind of order-
ing in the presentation of the training patterns and in
the way categories are commited: existing categories
grow slowly as they learn patterns nearby. This will
probably reduce the number of times the match track-
ing mechanism is triggered, and consequently we may
expect the number of commited categories to reduce.
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