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ABSTRACT—A new recognition system based on a neuro-fuzzy system, called FasArt, is proposed in 
this paper. Satisfactory results were obtained using the train_r01_v02 UNIPEN dataset, together with a 
comparison with the recognition rates achieved by independent human testers. Two methods for 
segmenting handwritten components into strokes are proposed, with better experimental results for the 
method based on biological models of handwriting, in terms of consistency and network complexity. A 
systematic experimental study of different codification schemes is also described, based on Shannon 
entropy and clustering maps. Finally, some steps towards the construction of an allograph lexicon are 
shown, that exploit the generation of fuzzy-rules by FasArt architecture. 
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1. INTRODUCTION 
Handwriting has been studied for a long time, because of its widespread use as a means for human-to-

human communication. Its generation and recognition aspects served as a paradigm in order to study models 
and generic techniques, besides the need to solve the specific engineering problem. As an example, we 
mention the studies on the human motor system, that use handwriting as an exemplar of fine movements [21]. 
On the other hand, its variability, due to differences in cultures, writer styles, alphabets or fonts, make it an 
interesting problem in the field of pattern recognition [27]. Its two-way relationship with the humans 
(generation and perception) requires an involvement of knowledge and techniques, more related to 
psychology, biology, and neural modeling. Therefore, a fusion of work in handwriting generation models, 
neural and fuzzy systems can be of help for the study of this problem. 

As far as engineering methods for on-line handwriting recognition are concerned, a great number of 
them has been proposed in the literature [27]. However, it was found very difficult to perform a quantitative 
comparative analysis. This problem was caused by important differences in the experimental conditions, such 
as number of writers, type and size of learning and test sets, data format, etc., that reflected a proprietary 
status of data used in experiments. This deficiency that restricted the advance of this research and 
development field was tackled by the on-going world-wide UNIPEN project [14], that has already collected 
over 5 million characters provided by 40 organizations in a common human-readable format. A long time 
devoted to data debugging and documentation has been based on the distribution of successive learning sets 
to the project participants, aiming to perform a common benchmark in the near future. The use of UNIPEN 
data by the research community will permit an analysis of the relative advantages of the proposed methods. 
Then, reliable methods for handwriting recognition can be used by the industry in order to re-launch efficient 
pen-computers, in the line of Apple Newton and eMate, or other Personal Digital Assistants. This type of 
mobile, small (even hand-held) computers, equipped with infrared or other wireless communication 
interfaces can provide a very interesting solution for the paradigm of ubiquitous, nomadic computing [18]. 
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Important applications of pen-computers include access to Web-based information servers or integration in a 
flexible, virtual classroom [29].  

In this paper, we propose and experimentally study an on-line handwriting recognition system using 
UNIPEN data. In section 2, we pay attention to the preprocessing stage and especially to character 
segmentation. This step is necessary because our system considers on-line handwritten specimen as a signal 
with dynamic information, that can be split into components (between two successive pen-lifts), which are in 
turn divided to elemental movements, called strokes. Following models of handwriting generation that have 
been reported in the literature [22], we propose a biology-inspired segmentation method and compare it with 
another method developed by us, that is based on geometric features.  

In the following section, we study the process of finding a feature set, that would be sufficiently 
discriminant for the strokes, as well as for the components and characters formed by them. Our analysis is 
based on Shannon entropy and on clustering maps, together with systematic methods that provide an ordered 
list of candidate features, such as RC [26] or genetic algorithms.  

The core of our classification, i.e. the system based on the FasArt neuro-fuzzy architecture, is described 
briefly in section 4. Such an architecture, motivated by studies on human cognition that resulted in the 
original ART architectures [9][7], is consistent with our general approach based on human modeling. 
Furthermore, its compliance to the plasticity-stability dilemma [13], its formulation as a fuzzy logic system, 
and our previous experience on similar architectures [11] contributed to the adoption of this specific 
classification scheme. 

The experimental results on the UNIPEN second version of the first training release, distributed 
officially as train_r01_v02, are presented in section 5. Based on this experimental study, we can draw 
conclusions on the relative merits of the proposed segmentation techniques, codification schemes, network 
complexity, real-time processing characteristics, etc. Similarly, we can take a look on its main error sources 
and compare its performance with human subjects that were exposed to the same learning and test sets. 
Finally, we present some steps towards the construction of an allograph lexicon [19], starting from to the 
fuzzy rules produced by our neuro-fuzzy classifier. 

2. CHARACTER SEGMENTATION 
The objective of segmentation is to divide complex handwriting pieces into simpler ones, in order to 

reduce input pattern variability and thus simplify the classifier structure. In this work initial data are isolated 
characters composed of one or more components, which are to be segmented into strokes. Segmentation 
methods can be derived from handwriting generation theories as well as heuristic studies of the geometric 
features in handwritten specimen: 

According to Plamondon [21][22], handwriting is generated by a sequence of superimposed simple 
movements, each with a delta-lognormal velocity profile. Segmentation procedures should then divide the 
velocity profile of a component into simpler delta-lognormal profiles, each corresponding to one stroke. 

It can be observed that the first part (with a form of ‘c’) of the trajectory of several characters is similar, 
e.g. in ‘a’, ‘c’, ‘d’, ‘g’, ‘o’ and ‘q’. It should therefore be reasonable to expect that any character could be 
built from a finite base of strokes. Then segmentation should aim to discover such a stroke base, assuming 
that character allographs correspond to sequences of strokes picked up from the aforementioned base. 
Allographs are further discussed in section 6. 

Besides the extensive use of this generic approach in oriental character recognition, biology-inspired 
segmentation methods based on minima in velocity profiles (see figure 1f) have been proposed in the 
literature [24], [17].These algorithms require preprocessing of real data, due to signal quantization, inaccurate 
sampling rates or human trembling that may introduce irregularities.  

In this paper, we propose and compare two methods based either on geometric features or on biological 
models of handwriting generation. 

In the first method (M1), it is necessary to preserve geometric features of handwriting, and therefore all 
repeated points are deleted, instead of performing a low-pass filtering. This produces a signal without zero 
values but with minima in the same locations as in the original velocity signal. These minima are considered 
as candidates for segmentation points, and later iteratively evaluated in order to delete bad segmentation 
points. A candidate point Ci is deleted if: 

• the angle between iii CC −  and 1+iiCC  does not correspond to a significant change in trajectory 
direction, or 
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• the length of the segment iii CC −  or 1+iiCC  is smaller than a threshold. 
This two-phase segmentation (selection of candidate segmentation points and iterative selection of the 

geometrically significant ones) is based on [2]. It eliminates velocity minima produced by spatial 
quantization (discrete sampling of space on the electronic pad surface), selects the best segmentation point in 
a region with successive changes in trajectory direction, and finally discards spurious minima and too short 
artifacts in the extremes of a component. Additional enhancements implemented in our system include 
adaptivity for the angle and length thresholds, as well as mechanisms to avoid proliferation of strokes in 
curved parts of a component [12]. 

The second method (M2), proposed in this paper, is inspired on handwriting generation theories 
[21][22]. It tries to eliminate perturbations in the velocity signal with the minimum modifications of the 
character geometry. For this purpose, a FIR low-pass filter was applied to the velocity signal, with a cut-off 
frequency of 10 Hz [28] and a window length of f/10, where f is the sampling frequency of the digitizer pad. 

After this preprocessing stage, angle θ(t)≈arctan(∆y(t)/∆y(t)), angular velocity θ'(t)≈∆θ(t) and linear 
velocity v(t) signals are obtained. This information is jointly exploited in order to obtain the segmentation 
points: 

• Initial candidates are determined according to singularities of the angle signal, which are crosses 
with 0, 90o and –90o. Crosses with 0 will determine peaks (due to sudden changes in orientation), 
loops (in which there is a transition to a different angular region), and crosses with horizontal base 
lines. Also, crosses with 90o or –90o can be used to detect crosses with vertical base lines. These 
candidates can be seen in figures 1a and 1b for a sample of letter ‘a’. 

• In this step, we look for extrema of the angular velocity signal in the vicinity of the candidate points 
chosen in the previous step. This second criterion is not used independently, because of its extreme 
sensibility to possible perturbations that might have passed through the low-pass filter stage. The 
output of this stage is shown in figures 1c and 1d for the same as above character. 

• Finally, minima in linear velocity next to remaining candidates determine the final set of 
segmentation points. The use of this information, which is theoretically dual to extrema in angular 
velocity, permits us to reduce the number of local singularities that were previously accepted as 
segmentation points. In figures 1e and 1f the final segmentation points are shown for our example. 

• Besides this basic segmentation procedure, we can use any available pen-up information, in order to 
delete small strokes that are due to a too early contact of the pen with the pad or a too late 
withdrawal, in the beginning or in the end of the component respectively. Information of the linear 
velocity profile can also be used to delete small pulses (ornamental strokes), as shown in figures 1g 
and 1h. 

Several criteria can be used in order to evaluate the relative merits of the proposed segmentation 
techniques: Simplicity, in order not to pose obstacles to a real time processing of the global system; 
Consistency, i.e. similar characters should be segmented to similar strokes, independently of small 
variations; Limited number of fundamental strokes, i.e. the obtained strokes should be able to be grouped 
in a small number of clusters, thus reducing the size of the stroke base; Small number of strokes per 
character, in order to reduce the length and consequently the variability of stroke sequences that represent 
the characters; and finally, Independence with respect to experimental conditions, as an indicator of the 
method robustness. 

Our experimental results on the UNIPEN data, permitted us to make the following observations: 
 
• Both methods are suitable for real-time processing, since they consume a time in the range of 6 

msec/character, measured with Linux time utility in a Pentium 120 MHz-based PC. The second 
method (M2) is slightly slower. 

• The second method (M2) is more consistent, although both of them provide satisfactory results. The 
main reason is the combination of several complementary criteria in method M2, while the method 
M1 is extremely sensitive for shapes of intermediate curvature. This fact is specially present in 
upper case letter segmentation, for which method M2 is clearly better, as shown in section 5. 

• The size of the stroke base is lower for method M2 (further study is made in the following sections, 
that include clustering and classification stages). 

• The number of strokes per character was found to be satisfactory, since it was over 6, only in less 
than of 1% of the characters, with a mean close to 3 strokes/character. Moreover, method M2 
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typically provides a number of strokes mc±1, where mc is the average number of strokes for the 
samples of character c. 

• The geometric method (M1) is more robust with respect to variations of the handwriting speed. 
Method M2 depends on the way the character is drawn, and therefore has problems with 
calligraphic or extremely fast handwriting. 

Globally, both methods were found to have a satisfactory performance, which will be further evaluated 
in the following sections. 
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Figure 1. Successive steps of the proposed segmentation method based on biological models (M2). 
Character ‘a’ with the corresponding segmentation points and the associated signal information is 
shown. (a,b) Singularities in angle signal are selected as segmentation candidate points. (c,d) Extrema 
in angular velocity are found in the vicinity of candidates of previous step. (e,f) Minima in linear 
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velocity next to candidates of previous steps are selected as final segmentation points. (g,h) Pen-up 
information is used to delete some strokes (dotted lines) 
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Figure 2. Geometric features used in the selected codification. φ1 and φ2 are the phase points of the 
stroke, φtot the total phase, and L its length. 

�a� �b�
 

Figure 3. Clustering maps for the same data set, with different features used for codification. (a) Two 
phases, total phase, sequential feature and last y coordinate. (b) Main direction of the stroke using 
Karhunen-Loéve axis, and mean x and y. Clustering was made with the unsupervised module of FasArt 
(see section 4), for the upper case letters after segmentation based on biological models (method M2). 

3. FEATURE EXTRACTION 
Feature extraction or codification is necessary in order to cluster strokes within our effort to build a base 

of character primitives and classify stroke sequences that correspond to complete characters. Then features 
should be discriminant, geometrically significant and consistent for each character class. In this work we 
built a small set of features extracted from the literature [17] and from our knowledge about the problem. 
Several feature sets were evaluated, that come from our initial feature pool. The well-known task of feature 
extraction was handled through the use of two techniques, i.e. Shannon entropy [25] and clustering maps. 

Shannon entropy [25] of a continuous variable x can be defined by 

 ∑
=

−=
N

i
ii PPH

1
2log  (1) 

where Pi is the probability of the i-th of the N equal partitions made in the interval of variation of variable x. 
Shannon entropy can be understood as the quantity of information provided by one variable. In the case 

of feature extraction for pattern classification, we are interested in having high values, i.e. variables with high 
entropy are more discriminant. However, high Shannon entropy does not guarantee that features contribute to 
a geometrically significant feature set. 
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Table I shows Shannon entropy values for the selected features. All features are geometric (see figure 2), 
except that mentioned as “Main orientation of a stroke using K-L transform”, which corresponds to the K-L 
transform of the direction of the stroke. Using the unsupervised module of the neural network proposed in 
section 4, clustering maps of the strokes were obtained, for two feature sets that contain the most 
discriminant features according to Shannon entropy. 

In figure 3 we can clearly observe that only one feature set produced geometrically significant clustering 
maps, that are more appropriate for our final classification goal. 

For the final feature selection a systematic method, called regularity criterion (RC) [26], was employed. 
This method seeks the minimum error index, while progressively including features in the final set. Although 
a voting strategy was additionally used, there was no warranty that we could avoid local minima. In order to 
reduce such a risk, a genetic algorithm was alternatively used, seeking for a minimum in an objective 
function (the same classification error index used in RC method) by pseudo-randomly varying (mutating) the 
feature set. However this method produced similar results to the use of RC. Finally, RC method was run on 
several data subsets and a voting strategy applied to determine the optimum feature set. Such a process 
permitted us to conclude, e.g. that a sequential feature, indicating whether a stroke is in the beginning or in 
the end of a component, clearly contributes to a better classification. On the other hand, it was found that 
some features sets are more appropriate for digits and upper case letters, where variation is much less than 
that found in lower case letters. However, we decided to use the same feature set for all types of characters, 
that consisted in length L, two phase points (φ1 and φ2) and total phase φtot of the stroke, the end y coordinate 
(normalized) and a discrete sequential feature that informed if the stroke started and/or ended component (see 
figure 2). 

 
Table I 

Normalized Shannon entropy for some codifications 
Features Entropy Features Entropy 
Length 0.7623 Final y coordinate 0.9446 
Two phase points 0.9297 0.9393 Minimum y coordinate 0.7310 
Total phase 0.9238 Main orientation of stroke  

using K-L transform 
0.9588 

0.85780 
Area 0.5988 x and y mean 0.9803 0.9702 

4. FASART: FUZZY ADAPTIVE SYSTEM ART-BASED 
Fuzzy sets theory based on pioneer work by Zadeh [30], introduces an alternative to cope with vague 

information through a formulation close to that used in natural language. It has been used in different areas 
including pattern recognition and classification [3]. 

In the past few years two criteria have been followed for the definition of fuzzy logic systems: on one 
hand heuristic methods usually based on ideas coming from statistical classification [1]; on the other, 
embedding of fuzzy logic into neural networks in order to have fuzzy systems with learning capabilities [15]. 
Within the architectures of Adaptive Resonance Theory, the Fuzzy ART model [9] introduces fuzzy 
operators. Thus, a classifying module was achieved, that pretends to provide a self-organizing classification, 
based on categories of fuzzy nature. Similarly, a supervised architecture, Fuzzy ARTMAP [7], is built using 
Fuzzy ART modules within the original ARTMAP architecture [8]. In ARTMAP-based architectures, 
supervised models are defined on the base of the incremental learning of the relations that appear between the 
outputs of two self-organizing modules. The introduction of fuzzy logic should permit the definition of 
categories as fuzzy sets, with their associated membership functions. However, Fuzzy ARTMAP does not 
include a formal definition of the categories as fuzzy sets, and therefore cannot be properly defined as fuzzy 
logic systems [5]. For a review of the main principles of ART architectures and a detailed discussion of their 
treatment of Fuzzy Logic, see [23], and [20] for a detailed study of the STORE memory model. 

A new neuro-fuzzy model, called FasArt [5], formally relates neural activation with fuzzy set 
membership functions, permitting its dual interpretation as fuzzy logic system and as neural network. For this 
purpose, the activation function of Fuzzy ART [9] is redefined by an expression which can also be 
interpreted as the triangular fuzzy membership function described by the weights of the associated category. 
For each input dimension i=1,...M the activation ηRk of unit k is determined as in figure 4, where wki and wki

c 
are weights present in Fuzzy ARTMAP architecture, and cki are newly introduced weights representing the 
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center of the fuzzy membership function. A new design parameter γ permits us to control the degree of 
fuzziness of the fuzzy sets (higher γ would lead to less fuzzy sets). The total activation is given by: 

 ∏
=

=
M

i
ikiR )I(

k
1

ηη  (2) 
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Figure 4. Neural activation/fuzzy membership function in FasArt, where the fuzzy degree of the 
membership function can be varied with parameter γ. 

 
With these changes, FasArt shares with Fuzzy ARTMAP the ARTMAP-based architecture, and 

therefore the main advantages of such models are preserved, i.e. fast learning, compliance to the stability-
plasticity dilemma, and capability for incremental learning in test phase. Moreover, the introduction of a 
duality between activation function and fuzzy membership function permits the interpretation of an 
ARTMAP-based architecture as a fuzzy logic system, allowing us to take advantage of general theorems, that 
guarantee FasArt capability to approximate arbitrary functions [5].  

Being FasArt a fuzzy logic system with self-organizing features, i.e. capabilities to learn from examples, 
fuzzy rules can be extracted from FasArt weights. Actual output is obtained after a defuzzification process, in 
the general case of identifying a continuous function. However, in character recognition problems output is 
simply a label and defuzzification is not necessary. The process of classifying a character can be summarized 
as follows:  

1. Present the features vector corresponding to one stroke. 
2. Cluster this vector with ARTa, and storing the resulting cluster in the STORE. 
3. Repeat this presentation, clustering and storing for the rest of the strokes. 
4. Find through the inter-ART map the category in ARTb most related to the sequence of strokes in the 

STORE. 
5. Obtain the label corresponding to this category. Labels of other activated categories can be obtained 

with smaller confidence degree. 
Then, an ordered list is obtained reflecting the confidence degree, that a certain input is related to the 

examples that generated the categories (fuzzy sets). This feature can be used in a post-processing module, 
e.g. using a syllabic dictionary [16] in order to correctly predict complete words. 

For the on-line handwritten character recognition studied in this paper, the original FasArt structure has 
been modified, on the basis that we adopt a stroke-based model for classification; after unsupervised module 
a sequence of clusters must be associated with the character label. For this purpose we use the STORE model 
[4], based on studies of human memory [13]. The introduction of this module makes necessary to modify 
inter ART reset scheme, in order not to reclassify all clusters in the sequence but only the less confident. 

Besides, a statistical module using edit distance between input sequence and prototypes has been used to 
validate FasArt prediction. This element makes use of the sequence of clusters produced by FasArt 
unsupervised module, a database of the sequences that appeared during training, and a distance module. Edit 
distance is calculated between the input sequence of clusters and the stored sequences, each with an 
associated label, as a weighted average of substitution distance (if both sequences have the same length), 
insertion and deletion distance (if one sequence is one item longer). Here substitution distance was 
considered more important. 
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The label that minimizes such distance would be the correct prediction. However, when this edit distance 
was used, we found experimentally that often several labels provide the minimum distance. Therefore, this 
statistical module is not suitable for building a classifier, but is useful to validate FasArt prediction, i.e. if 
FasArt prediction is among those which provide minimum distance, prediction is accepted, and otherwise an 
inter-ART reset is forced. 

 
 
 
 

5. EXPERIMENTAL RESULTS FOR CHARACTER RECOGNITION 
As we have already mentioned in the preceding sections, all experimental results were obtained using 

UNIPEN second version of the first training release, distributed as train_r01_v02. From this set we excluded 
those files with the sampling rate of the pad not documented, since this element is necessary for the proposed 
segmentation method based on biological models (method M2). A total of 3838 digits, 12198 lower case 
letters and 4248 upper case letters were divided randomly into training and test sets, assuming that all the 
writer provide samples to both sets. 

Recognition experiments were carried out with both segmentation methods, using a feature set of two 
phases, total phase, length, sequential feature and last y coordinate (totaling 6 features), and the neuro-fuzzy 
classifier based on FasArt. For training ρ=0.7, β=βc=0.8 in ARTa, while during the test stage ρ was relaxed to 
0.7. These parameters were tuned heuristically, although it was experimentally found that ρ, β and βc values 
could be safely varied in [0.5,1] without significant decrease of recognition rate, as long as ρ value in the 
training stage was greater to that used in the test stage. Classification results after four training cycles are 
shown in table II. 

In section 2, it was argued that segmentation based on biological models (method M2) is more consistent 
than geometric (method M1), specially for open curves, like those mostly found in upper case letters. In this 
sense it is expected that with segmentation method M2 the number of clusters created after training should be 
smaller and therefore higher classification rates should be achieved. This is experimentally confirmed as 
shown in table II. The average number of clusters for all types of characters was reduced in 12%, being the 
most significant reduction (over 15%) in the case of upper case letters. 

It is important to assess error causes in order to estimate data inaccuracies and to eventually improve 
some of the modules. The main detected error causes were the following, as illustrated in figure 5: 

• Erroneously labeled data (as judged by human recognition), since not all characters have been 
checked by human recognizers in this training release. This is the case of figure 5a, where correct 
label should have been ‘C’, as predicted by the proposed system, instead of ‘I’. 

• Ambiguous data as the characters shown in figure 5b, for which even a human does not clearly 
recognize a ‘B’.  

• Segmentation errors, that may vary, ignore or enhance geometric variations of the character. Figure 
5c is an example of such an error.  

• Insufficient feature set, that may not include information enough to classify the patterns, as in figure 
5d, where two phases are not enough to distinguish a straight line from a very open curve. 

A reasonable performance limit to the proposed system can be obtained when compared to human 
recognition, since this can let us estimate how many bad labeled, ambiguous or unrecognizable data are in the 
test sets. For human recognition three volunteers not related to this research were employed. Initially the 
training patterns were shown in a console, six patterns at a time, with the corresponding labels. They were 
given free time to study each screen. Afterwards, they were shown one test pattern per screen and required to 
label it or simply give an ‘I do not know’ answer. The human average classification rate is shown in table II. 
Compared to our previous experiments [18] on digit recognition by humans without training, a 6% 
improvement can be found due to training on characters from the same writers found in the test set, since 
there exists a great variability of writers and cultures found in UNIPEN data sets. Two of the humans 
involved in both experiments explicitly confirmed this issue. Additionally, it can be seen that recognition of 
lower case letters was a much more difficult task for both humans and the proposed method.  
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Table II 
Recognition rates for the different test sets after four training cycles, using the geometric 

segmentation (M1), the method based on biological models (M2), and those achieved by human 
testers. 

 Set Correct Wrong Unclassified 
Digits 85.39 7.64 6.96 
Upper case letters 66.67 14.74 18.60 

Geometric 
segmentation 

(M1) Lower case letters 59.57 29.36 11.07 
Digits 82.52 9.23 8.24 
Upper case letters 76.39 12.37 11.24 

Biological models 
segmentation 

(M2) Lower case letters 58.92 32.92 7.14 
Digits 96.17 2.02 1.81 
Upper case letters 94.35 4.71 0.94 

Human 
recognition 

Lower case letters 78.79 15.15 6.06 

�a� label� I prediction� C �b� label� B prediction� R

�c� label� T prediction F �d� label� U prediction V  

Figure 5. Typical classification errors. The original character and FasArt internal representation are 
shown with their labels. (a) Badly labeled data. (b) Ambiguous data.  (c) Badly segmented data. (d) 
Character features not retained by codification. 

 
One important issue for developing applications based on on-line handwriting recognition in a pen-

computer is real time performance. In this sense, processing time required by the proposed system is low 
enough (on a Pentium 120MHz PC, measured with Linux time, 276 ms/char for the whole test process, 
including 7 ms/char for segmentation, 5ms/char for feature extraction, and 265 ms/char for the actual test). 
We should remind that handwriting is a low velocity process, especially as compared to the speed of 0.28 
sec/char achieved by the proposed system. Here we can emphasize the low training time, due to the fact that 
learning is guided by pattern matching instead of error minimization, as opposed to backpropagation-based 
solutions for which a much higher training time is expected [6]. 

5. PRE-ALLOGRAPHS: TOWARDS AN ALLOGRAPH LEXICON 
The building of an allograph lexicon has been studied [19] as an instrument for syntactic recognition and 

script description. If a stroke-based model is used, a character x composed of n strokes si has one or several 
allographs, i.e. different forms of being written: 

 IF s1 IS c1 AND ... AND sn IS cn THEN x IS l  

where stroke si belongs to cluster ci and character x has a label l. 
Such rules can be obtained by our neuro-fuzzy system FasArt, since each stroke is classified in a cluster 

by ARTa and the whole character belongs to a fuzzy set with label l, with a certain membership function 
value. However, extraction of a reduced set of rules is difficult when the number of clusters becomes high, 
because of the supervision method employed in FasArt or Fuzzy ARTMAP [10]. In order to reduce network 
complexity, exploit the classifier generalization capabilities and simplify the process of rule fusion [10] to 
create allographs, reconstruction of the prototype from FasArt ci weights is made, and unsupervised 
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classification of these prototypes is carried out with an unsupervised module of FasArt, leading to a great 
reduction in the number of clusters. A typical example of this methodology is the reduction of 567 clusters 
with supervised training on upper case letters to 166 unsupervised clusters. 

Therefore, we use an extended definition of allograph (called pre-allograph) in the following way: 
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Figure 6. Typical pre-allographs with strokes reconstructed from FasArt ci weights. This 
reconstruction is based on the weights cki, and thus simplifies the fact that clusters are fuzzy sets. 
(a,b) Pre-allograph for three-stroke ‘0’ and typical reconstructions  from this pre-allograph. (c,d) Pre-
allograph and typical reconstructions for a four-stroke ‘0’. (e,f) Pre-allographs and typical 
reconstructions for a four-stroke ‘M’. Pre-allograph for a three-stroke ‘N’ is formed by the first three 
stokes of ‘M’ pre-allograph. 
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Using this definition, all characters from our UNIPEN set could be described by a small set of pre-
allographs. For example, in figure 6a we can see that a three-stroke digit ‘0’ could be represented by three 
conditions joined by AND, where 2, 2, and 3 alternatives were necessary for each condition (stroke). 

A detailed analysis of the pre-allographs permitted us to identify some interesting issues: 
• Segmentation errors may produce different pre-allographs. Thus a character class may have pre-

allographs of the type: (c1,c2,c3) and (c4,c3), i.e. although they have a common stroke that belongs to 
the same cluster, their representation is different because of different segmentation. 

• Different allographs have a common part, such as (c1,c2,c3) for normal ‘0’ and (c1,c2,c3,c4) for a 
computer ‘∅’, where clusters (c1,c2,c3) form a circumference and c4 a slash. This is illustrated in 
figure 6a and 6c. 

• Different characters with a part geometrically similar (e.g. ‘M’ and ‘N’), will be represented by pre-
allographs with a part in common. This is illustrated in figure 6e, where first three strokes of a ‘M’ 
pre-allograph form a ‘N’ pre-allograph. 

• A great number of exemplars in the actual data can be described with these pre-allographs. With 
pre-allograph in figure 6a, 54% of the three-stroke ‘0’ samples are described, and with figure 6c, 
51% of the four-stroke ‘0’ samples. Since 66% of ‘0’ exemplars are segmented in three strokes and 
15% in four strokes, with these two pre-allographs 44% of the ‘0’ samples are described. The pre-
allograph in figure 6e describes 69% of the four-stroke ‘M’ samples, which constitute 51% of the 
total.  

6. CONCLUSIONS 
In this paper a complete scheme for handwriting recognition is proposed. A special merit of this work is 

the fact that the data set came from the UNIPEN project. In it, various writers with different cultures and 
habits used different tablets in order to produce a common data bank for future benchmarks. The difficulty of 
character recognition for this set was confirmed by a test with tree human subjects, who reached a 
recognition rate of 94-96% for digits and upper case letters, while a rate of only 79% was achieved for the 
most difficult set of lower case letters. Our system achieved a rate of about 86% for digits, while for the 
highly variable lower case letters a percentage of around 59% was reached. 

The general approach was inspired on theories of handwriting generation, as well as on neuro-fuzzy 
models that approach the processes of human perception and cognition. On one hand, we tried to exploit the 
decomposition of handwritten specimen into elemental strokes. On the other hand, recognition was based on 
FasArt architecture that was shown to represent a fuzzy logic system with capabilities of universal function 
approximation, while preserving all important advantages of Adaptive Resonance Theory models.  

Two segmentation methods were proposed and experimentally studied, showing that the one inspired in 
biological models was more consistent and contributed in lower network complexity. Also, a systematic 
search was performed in order to find the best feature set, based on Shannon entropy and clustering maps. 
Experimental results confirmed a very good performance in terms of learning time. This can be expected 
from the characteristics of learning by matching of ART networks, and also from experimental results from 
the literature which report improved performance of ART networks in terms of training time when compared 
to other main-stream backpropagation neural networks. Furthermore, real-time characteristics for the test 
phase have been shown in our experiments.  

Finally, we showed how the generation of fuzzy rules by FasArt permitted the construction of pre-
allographs. On-going study with respect to rule fusion and reduction of network complexity, may conclude 
with the building of an allograph lexicon. Such a lexicon may contribute to the further study of the way 
characters are generated and recognized, as well as to their use in a recognizer of fuzzy-syntactic nature. 
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