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Abstract

This paper presents an on-line hand-printed character recognition system, tested on datasets produced by the UNIPEN
project, thus ensuring sufficient dataset size, author-independence and a capacity for objective benchmarking. New
preprocessing and segmentation methods are proposed in order to derive a sequence of strokes for each character, following

Žsuggestions of biological models for handwriting. Variants of a novel neuro-fuzzy system, FasArt Fuzzy Adaptive System
.ART-based , are used for both clustering and classification. The first task assesses the quality of segmentation and feature

extraction techniques, together with an analysis of Shannon entropy. Experimental results for classification of the
train_r01_Õ02 UNIPEN dataset show real-time performance and a recognition rate of over 85%, exceeding slightly Fuzzy
ARTMAP performance, and 5% inferior to the rate achieved by humans. q 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

On-line handwriting recognition has been a re-
Žsearch focus point for a long time Tappert et al.,

.1990 , but specially lately due to the expansion of
pen-based Personal Digital Assistants or communica-
tors. However, lack of a common and sufficient data
base posed a serious obstacle to the development of
reliable systems that could handle the variability of
handwriting and permit the comparison of the vari-
ous methods proposed in the literature. In this sense

) Corresponding author.

the UNIPEN project, that started in 1993 with the
participation of 40 organizations, has already col-
lected and organized 5 million characters for an
upcoming benchmark and its public distribution
Ž .Guyon et al., 1994 . We then used data from the
UNIPEN project in order to test the proposed prepro-
cessing and classification techniques.

Our recognition system uses a stroke-based model
for the description of handwritten characters. Ac-

Žcording to handwriting generation models Plamon-
. Ždon, 1995 , components handwritten specimen be-

.tween two successive pen-lifts are made of strokes
Žwith velocity profiles described by a given delta-
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.lognormal equation. Such a biologically motivated
solution has already been employed in other schemes
ŽParizeau and Plamondon, 1995; Schomaker, 1993;

.Morasso et al., 1993 with promising results. In
Section 2, we present a segmentation technique that
permits us to obtain a consistent and short sequence
of strokes for each character, that at the same time
would provide efficient classification and reduced
computational complexity. Furthermore, in the same
section we discuss and compare candidate feature
sets that would better fit to this classification prob-
lem.

The system proposed here for digit classification
resembles an ART-based architecture for character

Žrecognition, previously proposed by us Dimitriadis
.and Lopez Coronado, 1995 . Now we introduce a´

Žnew neuro-fuzzy architecture called FasArt Cano et
.al., 1996 in pattern recognition problems, and com-

Ž .pare it with Fuzzy ARTMAP Carpenter et al., 1992 .
ŽWith both architectures the STORE Bradski et al.,

.1992 memory model is used to store the sequence
of categories related to the sequence of strokes that
form a character. The overall architecture of the
proposed neuro-fuzzy system will be briefly ex-
plained in Section 3.

Classification results with the UNIPEN data are
exposed in Section 4 and some common error causes
are commented, while concluding remarks and cur-
rent work related to the building of an allograph-
lexicon are presented in Section 5.

2. Character segmentation and feature extraction

This recognition system parts from isolated char-
acters, segmenting them into strokes and then ex-
tracting some features that represent these strokes.
This section explains what decisions were taken with
respect to segmentation and feature extraction.

There are several reasons behind segmentation of
components into strokes, mainly the following two:
Ø According to Plamondon handwriting generation

Ž .theories Plamondon, 1995 a trained human gen-
erates a sequence of superimposed simple move-
ments to write a character, each of these simple
movements with a delta-lognormal velocity pro-
file. Thus, segmentation consists in fragmenting
the velocity profile of a component in simpler

delta-lognormal-like profiles, each corresponding
to one stroke.

Ø If we observe characters, such as ‘‘b’’, ‘‘d’’, ‘‘p’’
and ‘‘q’’, similar segments in their trajectory can
be found, e.g. a horizontal line and a left-opened
semi-circumference. This can lead us to think that
any character could be built with strokes from a

Ž .finite base Kerrick and Bovik, 1988 . From this
point of view, segmentation consists in obtaining
such a base and in achieving a suitable character
representation.
Based on the concept of strokes as elemental

traces, minima in velocity profiles have been used as
Žsegmentation points in the literature Schomaker,

.1993; Morasso et al., 1993 . These algorithms re-
quire preprocessing with real data, due to trembling,
signal quantization or inaccurate sampling rate that
may introduce irregularities, e.g., repeated points
even if the pen is not still. Usually low-pass filters
are used on the velocity signal, since these irregulari-
ties are high frequency signals. Nevertheless, this
technique does not retire all repeated points, besides
the fact that it cannot be interpreted geometrically.

In our system we used a geometric iterative seg-
mentation algorithm, based on the search of velocity
minima. Initially all repeated points are retired, thus
eliminating redundant geometric information and

Žavoiding proliferation of velocity minima this pro-
cess causes loss of time instant information but not

.of time sequential information . This produces a
generalized Õelocity signal without zero values but
with minima in the same locations. Then minima of
the generalized Õelocity signal are considered as
candidates for critical points of segmentation and

Žiteratively these candidates except component begin
.and end points are evaluated. A candidate point Ci

is retired if:
Ø the angle between C C and C C does notiy1 i i iq1

correspond to a significant change in trajectory
direction, or

Ø the length of the segment C C or C C isiy1 i i iq1

smaller than a threshold.
ŽThis two-phase segmentation selection of candi-

date segmentation points and iterative selection of
.the significant ones, in terms of global geometry is

Ž .based on Al-Emami and Usher, 1990 . It eliminates
velocity minima produced by spatial quantization,
selects the best segmentation point in a region with
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Ž . Ž .Fig. 1. Segmentation results: Distributions for characters in UNIPEN train_r01_Õ02. a Strokes per component. b Strokes per character.
Ž .c Components per character.

successive changes in trajectory direction, discards
spurious minima and too short artifacts in the ex-
tremes of a component. Additional enhancements
implemented in our system include adaptivity for the
angle and length thresholds and mechanisms to avoid
proliferation of strokes in curved parts of a compo-

Ž .nent Gago, 1996 .
An objective of the segmentation phase is to keep

the number of strokes per component as low as
possible in order to reduce the computational cost of
the classification stage. This requirement was satis-
fied by our method, as it can be observed in the
results obtained with the characters of UNIPEN sec-
ond training release train_r01_Õ02, shown in Fig. 1.
We can also see that the total number of strokes per
character is kept less than 8, since there is a compro-
mise between number of components per character

Žand complexity of each component e.g. contrast the
one-component character ‘‘m’’ with the three-com-

.ponent character ‘‘H’’ .
Feature extraction or codification is necessary if

we want to group strokes of similar characteristics
together and therefore form a base of strokes or
character primitives. Segmentation and feature ex-
traction phases should jointly provide feature vectors
for every stroke, that would be discriminant, geomet-
rically significant and consistent for each character
class. In this work we studied several codifications,
containing mainly features of length and phase, but

Ž .also coefficients of waÕelet transform WT of im-
portant functions of the stroke trajectories. Among

other possible figures of merit, discrimination capac-
ity can be studied through Shannon entropy as shown
in Table 1 for some of the codifications. Such en-
tropy is obtained for each feature by dividing the

w xinterval 0,1 into N subintervals and applying Eq.
Ž .1 ,

N

P log PÝ i 2 i
is1H sy , 1Ž .norm log N2

where P are frequencies of appearance of the fea-i

ture within interval i, and log N is the maximum2

Shannon entropy.
Another way to test the quality of the segmenta-

tion process and the selection of the feature set is
through clustering maps. In this method, we em-
ployed the unsupervised version of FasArt, described
in Section 3, to group together strokes based simply
on the similarity of the corresponding feature vec-

Table 1
Normalized Shannon entropy for some codifications. The first two
codifications are more discriminant, since each individual feature
contains more information.

Features Shannon entropy

Length and three phase points 0.8975 0.9609 0.8952 0.9474
Four WT coefficients 0.7758 0.9698 0.9528 0.9513
from coordinate signal 0.7902 0.9324 0.8695 0.9080
Eight WT coefficients 0.6295 0.5361 0.4667 0.5077
from velocity signal 0.3718 0.3693 0.3411 0.3192
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Ž . Ž .Fig. 2. Clustering maps for a length and three phase points, and b WT coefficients from coordinates. While the former produces
geometrically significant clustering the latter does not, although both are discriminant according to Shannon entropy. Clustering was made
with UFasArt, the unsupervised module in FasArt architecture.

tors. In Fig. 2, we can observe that the length and
phase representations produce clusters of geometri-
cally similar strokes, a desired property of our sys-
tem.

The final feature set was based on length and
three phase points, including also the end y-coordi-

Ž .nate normalized and a discrete sequential character-
istic that informed if the stroke started andror ended
component.

3. Overview of the proposed neuro-fuzzy system

For clustering and classification we used the
Žneuro-fuzzy architecture FasArt Fuzzy AdaptiÕe

. Ž .System ART-based Cano et al., 1996 whose struc-
ture follows the principles of ARTMAP architectures
Ž .Carpenter et al., 1992 . In this system, two FasArt

Ž .unsupervised modules, one grouping strokes ARTa
Ž .and another classifying the label ART , are joinedb

by an inter-ART map. A STORE module is placed
after the ART , in order to record the sequence ofa

clusters into which all strokes of a character are
classified. A simplified block-diagram that holds for
both FasArt- and Fuzzy ARTMAP-based architec-
tures can be seen in Fig. 3.

FasArt introduces a new activation function which
can be interpreted as fuzzy membership function,
and therefore it can be considered as a formal fuzzy
logic system. Then, we can exploit theoretical results
that confirm FasArt capability to work as a universal

Ž .function approximator Cano et al., 1996 . A new

design parameter allows us specify the degree of
Ž .fuzziness of the system Cano et al., 1996 . On the

other hand, important properties of the neural ART
architectures are kept in the new model, like its
capacity for incremental learning even in the test
phase.

The choice of an ART-based architecture for
character recognition is based on ART’s strong bio-
logical and psychological foundations that make it
more appropriate for a cognitive task. Besides the
general advantages of neuro-fuzzy systems, like
adaptivity or parallelism, ART networks also comply
to the stability-plasticity and noise-saturation dilem-

Žmas, present in various neural systems Carpenter et

Fig. 3. Block-diagram for an on-line character recognition system
based on either Fuzzy ARTMAP or FasArt. Feature vectors for
each stroke are presented to ART , and labels to ART . Appropri-a b

ate segmentation signals to the STORE module indicate end-of-
component or end-of-character.
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Ž . Ž .Fig. 4. Typical classification errors, where the source s character and the prediction p label are shown, with the original character and
Ž . Ž . Ž .FasArt internal representation respectively. a Badly labeled data. b Ambiguous data. c Badly segmented data.

.al., 1992 . Furthermore, FasArt also incorporates the
aforementioned advantages of its formulation as a
fuzzy logic system. Finally, a previously developed

ŽART architecture Dimitriadis and Lopez Coronado,´
.1995 had suggested that such systems were ade-

quate for handwriting recognition and served as a
basis of comparison with the new architecture.

Clustering is made on strokes, i.e., clusters repre-
sent categories of strokes and characters are then
represented by sequences of clusters.

Classification of a pattern is performed according
to the degree of activation of fuzzy rules generated
during learning phase. Since values of membership
functions for a fuzzy set can also be interpreted as
classification to a class with a certain confidence

Ž .degree, other fuzzy sets classes can also be consid-
ered for postprocessing modules that may correct
errors. Additionally, the interpretation of categories
as fuzzy sets let us recover the prototypes codified in
the network weights, very useful in the analysis of
classification performance, as it can be seen in Fig.
4.

Significant design parameters are vigilance pa-
rameters, r , r and r for the unsupervised mod-a b ab

ules ART , ART and the inter-ART map respec-a b

tively. These parameters control granularity of built

clusters, as well as handling of exceptions. Learning
rate parameters b , b and b control how fasta b ab

new learning adapts previous knowledge. A new
statistical module has been added in our system, that
rejects a network prediction if the edit distance be-
tween the sequence that represents the input charac-
terrpattern and the learned prototypes is high enough.
Such a distance is based on the number of insertions,
deletions and substitutions between two sequences.

All parameters are fixed for the experiments based
on the knowledge about the statistical distribution of
the data and a validation phase. Although we se-
lected heuristic values, we could have employed a
genetic algorithm, such as that proposed by Renders

Ž .and Flasse 1996 in order to tune them. However, it
was experimentally found that parameters could be

w xsafely varied in 0.5,1 without undergoing a recogni-
tion rate of 78%, as long as vigilance in the training
phase was equal or higher to that in the test.

4. Analysis of the classification results

Experimental results shown in this paper use all
4020 digits of the second UNIPEN training release,

Table 2
Ž .FasArt and Fuzzy ARTMAP main parameters their values were fixed before the experiments . It was experimentally observed that better

Ž .results were obtained with lower vigilance parameter and learning rates during the test phase this change was made externally .

Train Test

Inter-ART ART ART Inter-ART ART ARTa b a b

Ž .r vigilance 0.70 0.90 1.00 0.60 0.60 1.00
Ž .b learning rate 1.00 0.80 1.00 – – –

C Ž .b only FasArt 1.00 0.80 1.00 – – –
STORE attenuation 0.75 – – 0.75 – –
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Table 3
Recognition rates with FasArt and Fuzzy ARTMAP after five
training cycles for the second UNIPEN training release.

Architecture Correct Wrong Unclassified

FasArt 85.66% 6.55% 7.79%
Fuzzy ARTMAP 83.68% 9.28% 7.04%

distributed as train_r01_Õ02, and divided randomly
in equivalent training and test sets, assuming that all
the authors provide characters to both sets. The main
network parameters are shown in Table 2, and five
training cycles were employed.

Global recognition rates for both architectures can
be seen in Table 3, while the confusion matrix is
shown in Table 4. It can be observed that FasArt
performance is slightly better than that of Fuzzy
ARTMAP. Although relative enhancement is not
significant, it can be further improved because class
labels together with confidence degrees provided by
FasArt fit well to a postprocessing module of error

Ž .detection and correction Merino Pastor et al., 1996 .
It is important to assess the reasons of errors or

no-decisions, that come out of a global recognition
system, with various modules. The following main
error sources were detected after an analysis of the
global confusion matrix, as well as of characteristic
special cases, such as those shown in Fig. 4.

ŽØ Erroneously labeled data as judged by human
.recognition , since when this character set was

released not all characters had been checked by
Ž .human recognizers. This is the case of Fig. 4 a ,

where the correct label should have been ‘‘2’’
instead of ‘‘1’’, as predicted by our system.

Table 4
Confusion matrix for numeral recognition using FasArt. High
confusion exists between ‘‘1’’ and ‘‘7’’.

0 1 2 3 4 5 6 7 8 9

0 163 4 1 0 2 0 4 0 7 0
1 0 166 3 4 3 1 0 14 3 1
2 1 3 177 2 0 0 0 0 0 0
3 0 0 5 156 0 4 0 5 0 0
4 1 5 0 0 171 1 3 1 0 5
5 0 2 0 6 0 135 1 0 1 5
6 2 2 0 0 0 1 188 0 1 0
7 0 22 3 0 0 0 0 157 0 2
8 5 0 1 0 0 0 1 0 177 0
9 0 0 0 2 0 3 0 2 1 177

Table 5
Recognition rates for human testers for the same second UNIPEN
training release.

Correct Wrong Unclassified

Human 90.21% 3.77% 6.02%

Ž .Ø Ambiguous data even to human recognition , as
Ž .the characters shown in Fig. 4 b . This is the case

of ‘‘1’’ and ‘‘7’’, a very frequent error confirmed
by the confusion matrix.

Ø Segmentation errors, that failed to detect geomet-
Ž .rically significant strokes, as shown in Fig. 4 c .

For such complex strokes, current codification
was not a fair description, since it is mainly based
on phases.
A reasonable performance limit of our system can

be obtained if we compare its performance with that
of humans. We can then estimate indirectly how
many errors were due to badly labeled or ambiguous
data. The same experiments were also carried out
with five volunteers not related to this research
project. Isolated digits were presented randomly to
the human testers, who had to label as digits from
‘‘0’’ through ‘‘9’’ or ‘‘unknown’’. Average recogni-
tion rates shown in Table 5 indicate a fine perfor-
mance of our system for this difficult classification
task.

As we explained in the previous section, cluster-
ing is performed on strokes while characters are
represented by sequences of clusters. The number of
clusters may serve as a measure of the system com-
plexity, while the number of sequences of clusters
for each digit represents the total number of allo-
graphs considered by our system. In our experimen-
tal studies with FasArt, 372 clusters were created for
all 6055 strokes present in the 2016 digits of the
training set built from the train_r01_Õ02 data set.
On the other hand, a typical representation through

Table 6
Recognition rates of our system for the most recent UNIPEN
train_r01_Õ07 set.

Architecture Train Test Correct Wrong Unclassified

FasArt 7139 7239 82.36% 9.67% 7.97%
Fuzzy ARTMAP 7139 7239 81.59% 11.95% 6.46%
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Table 7
Processing time, measured with the Linux utility time, for a PC
with a Pentium 120MHz processor.

Stage Average time

Segmentation 6 ms
Codification 5 ms

Ž .Training 1 cycle 158ms
Test 265ms

Ž .Average incl. training 434ms
Ž .Average not incl. training 276ms

allographs takes 16 allographs to represent more than
95% of the samples of digit ‘‘1’’. The number of
clusters and allographs is rather high but it can be
reduced using other preprocessing techniques, vigi-
lance parameters, or rule fusion techniques.

Using the same experimental conditions and with
just a training cycle, we tested our system with the
most recent UNIPEN seventh training release dis-
tributed as train_r01_Õ07. The capacity of our sys-
tem with other data sets can be assessed with the
recognition rates shown in Table 6, slightly worse
than those of the second release set, due to the
increased variability of the new set.

One of the most important features for the appli-
cability of an on-line handwriting recognizer in a
pen-computer is real-time performance. Although our
system is not optimized in terms of access to hard
drive or monitor, processing time is low enough, as
we can observe from the results shown in Table 7.
We should remind that handwriting is a low velocity
process, especially if we compare it with the speed
of 0.28 secrchar achieved by our system.

5. Conclusions

A new handwriting recognition system was pro-
posed in this paper. Instead of testing and validating
it in a home-made set, we performed extensive ex-
perimental work on massive data collected within the
UNIPEN project. The main interesting point of
UNIPEN data is the fact that they are not controlled,
come from various authors, graphic tablets, cultures,
etc. and they can serve for comparison among vari-
ous systems. The achieved recognition rate of almost
86% on the digits of the second training set has been

shown to be close to the rate of 90% achieved by
independent human testers. Then several of the er-
rors or no-decisions are due to badly labeled or
ambiguous data even for human readers. At the same
time its low computing requirements make it valid
for a real-time implementation in a pen-computer.

The proposed system considers characters as se-
quences of strokes, inspired on biological models of
handwriting generation, and therefore it is heavily
influenced by the technique that segments handwrit-
ten components into strokes. The implemented algo-
rithm avoids problems of local processing and en-
hances existing techniques based on detection of
velocity minima. It satisfies the requirements for a
reduced number of geometrically significant strokes,
that could form a base of elemental movements,
capable of describing characters in a consistent way.

The feature vectors for each stroke have been
selected using the Shannon entropy criterion, to-
gether with an analysis of the produced clustering
maps, that confirms that geometrically similar strokes
belong to the same cluster. The recognition system
was based on an ART-based neuro-fuzzy system,
applied for the first time to pattern recognition prob-
lems. Its neural nature permits learning from exam-
ples, as well as construction of class prototypes,
while its formal definition as a fuzzy logic system
allows a more efficient postprocessing scheme and
extraction of fuzzy rules.

As an evidence of such capacity of rule extrac-
tion, our current work focuses on the creation of an
allograph lexicon, that would provide us insights
about the way characters are built from primitives.
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