
The Opportunity of Grid Services for CSCL-Application Development

L.M. Vaquero-González, D. Hernández-Leo, F. Simmross-Wattenberg, M.L. Bote-Lorenzo, J.I.
Asensio-Pérez, Y.A. Dimitriadis, E. Gómez-Sánchez, G. Vega-Gorgojo

University of Valladolid, Spain
{lvaqgon@ulises., davher@, fedesim@lpi., migbot@, juaase@, yannis@, edugom@,

guiveg@}tel.uva.es

Abstract

The choice of the most suitable middleware

technology for a specific problem or domain is
sometimes erroneously based on current trends instead
of on a thorough comparison of the features offered by
the different options. This could be the case of grid
services technology, which is claimed to be a
technological advance, but whose characteristics are
not clearly contrasted with other middleware
technologies. The aim of this paper is to analyze
whether grid services technology truly present some
required properties for CSCL (Computers Supported
Collaborative Learning) application development in
comparison with other service-oriented middleware
technologies, as well as with other types of middleware
paradigms (object-oriented or component-oriented).
To this end, we present relevant requirements of CSCL
applications and theoretical discussion about how well
they are satisfied by the aforementioned paradigms
and technologies. Finally, we introduce a case study in
order to illustrate our conclusions.

1. Introduction

Computer-Supported Collaborative Learning
(CSCL) is a research paradigm within the field of
educational software that underlines the key role that
social interactions play in the process of learning
[8,20]. CSCL applications must support several
requirements in order to be effective in terms not only
of collaborative learning theories and practices but of
economic factors as well. These requirements range
from typical features as co-ordination, communication
and collaboration [11] to the reuse of software pieces
[10,31] and the flexibility inherent to any learning
process [7,22].

The development of such applications can be
simplified by leveraging middleware, in that it resolves

the problem of heterogeneity, and facilitates
communication and co-ordination of distributed
elements [3,13]. Hence, in order to build distributed
systems that meet these requirements, software
engineers must know what middleware is available and
which one is best suited to the problems at hand [37].
However, the proliferation and continuous evolution of
middleware technologies have highlighted this
selection problem [4,33]. There are not only different
middleware paradigms such as those oriented to
objects [13], components [34] or services [29], but also
different specifications [26,27,32] for each of those
paradigms.

Significantly, a new technology has recently
appeared: grid services (GS) [2]. This technology
belongs to the service-oriented middleware (other
example is web services technology (WS) [5])
paradigm and enables the deployment of grid
infrastructures [1] in which multiple organizations can
share heterogeneous resources. In this infrastructures
resources ranging from data, files, or programs to
sensors, scientific instruments, display devices,
computers, and supercomputers are offered by
providers in the form of grid services. Applications in
a grid context can use shared resources for any
purpose. Typical examples include leveraging the
computational power provided by a large number of
computers or accessing specific hardware/software
[15].

Grid technology thus could be a good candidate for
developing CSCL applications, and specially those that
may require supercomputational capabilities such as in
[19,30] or access to specific hardware resources such
as in [6,23]. Nevertheless, the selection of this
technology should not be based more on market trends
but on the results of a thorough comparisons of
alternatives.

Within this context, the main goal of the paper is to
analyze if GS technology actually provides the

capabilities required by CSCL applications, and
compare them with those offered by other middleware
technologies. Three partial objectives can be derived
from this global aim:
• To identify key requirements of CSCL-

application development. This involves designer,
software engineer, programmer, administrator,
and every technical role related to applications’
lifecycle from design to maintenance.

• To state whether service-oriented middleware
satisfies these requirements and make a
comparison with object and component-oriented
middleware.

• To analyze whether GS technologies satisfies the
identified requirements in comparison with web
service technologies.

The structure of this paper is as follows. Section 2
highlights CSCL requirements and a brief background
of middleware technologies from an evolutionary point
of view. Section 3 is devoted to a comparative
analysis. First, service-oriented middleware is
compared to object and component-oriented
middleware paradigms. Then, a comparison between
GS and WS follows. In section 4, an overview of a
grid service-based CSCL system being developed by
our research group is shown, which is employed in
order to illustrate some of our assertions. Conclusions
and future work are presented in section 5.

2. Formulation of the Problem

As mentioned above, CSCL focuses on the use of

technology as a means of supporting collaborative
methods of learning [20]. This section points out
CSCL requirements and presents a brief outline of
well-known middleware paradigms and technologies.

2.1 CSCL Requirements

Different pedagogical approaches and strategies

require a high degree of flexibility in CSCL
applications, due to the existing dynamism in
educational environments, namely teachers’
preferences, students’ capabilities and evolution (even
in the same course), etc. [9]. In this way, CSCL
applications may require dynamic adaptation to
situations that might arise at run time in a learning
scenario. For instance, the next task to be done may
depend on the result of the previous tasks, or planned
educational objectives may be changed during the
application lifetime (depending on students’ abilities,
etc.) [31].

Moreover, CSCL applications are often so specific
that they cannot be reused nor integrated within a
single framework even though they share many
common features. Since CSCL development is a
complex process, this development effort is only
justified when we have the chance to reuse previous
works into newer ones. It would be highly desirable to
have standard protocols and interfaces in order to
hasten application variety through reusability [10] of
software pieces.

Educators are often constrained by CSCL
applications when planning (or even performing) their
desired learning scenarios. Fulfilling actual CSCL
pedagogical needs may require run time modification
of the educational script [7] according to a set of
predefined paths specified by the teacher. Tailorability
[25] is the capability of a system to find suitable tools
and to integrate them in collaborative environments as
specified by educators in the scripts. In this sense, the
integration of these tools is accomplished by educators
or students, and not by technical staff. These final
users are not supposed to have high technical
knowledge. So, technical issues should somehow be
hidden, thus allowing the teacher to concentrate on a
proper educational design. This is known as the
technification problem [25].

Modern CSCL applications require more
sophisticated gadgets enabling the usage of astronomy
telescopes, physics simulators, Virtual Reality
collaborative education, etc. The cost of such devices
(like powerful telescopes, supercomputers, and many
others) is often unaffordable for small institutions.
Besides, a single institution might have a huge number
of highly heterogeneous software and hardware
resources to satisfy every educational situation that
might appear [6,30].

In addition, scientific collaboration and education
require user interaction through a shared environment
(common resources), and perhaps across different
administrative domains (cross-organizational).

On the other hand, typical collaborative
applications include some features: co-ordination,
communication, and collaboration [11]. Besides, for
two people to collaborate, it is necessary to be aware
of what other people within the same group are doing
that could enhance collaboration effectiveness
(awareness). Awareness and co-ordination (of
activities, shared objects, or software) imply a one-to-
many communication model in order to be able to take
a co-ordination decision, to notify that a new activity
has just been started by a user, etc.

2.2 Middleware technologies background

Some authors [13,17] consider Sun's Remote

Procedure Calls (RPCs) and Message Oriented
Middleware (MoM) as the first middleware platforms,
developed in the early 80s. In this paper we are only
considering more advanced middleware paradigms,
since those early technologies provide just
communication facilities for programmers. Figure 1
summarizes the chronological evolution of middleware
solutions we will focus on.

Figure 1: Evolution of studied middleware

paradigms and related technologies

More recent middleware technologies focus on the
object and component paradigm. Object Middleware
(CORBA; RMI, DCOM) introduces the advantages
from Object-Oriented programming in distributed
applications. Meanwhile, components do not have
external dependencies, but are self-contained,
deployable pieces of software. Sun started its own
approach, and developed EJB (Enterprise Java Beans)
[32] to support distributed component-oriented
programming in Java. Microsoft and OMG have
technologies to offer too, respectively .NET [24] and
CCM (CORBA Component Model) [27].

Nowadays, WS middleware has entered the stage,
trying to eliminate some of the previous disadvantages
of component-oriented middleware. WS are very
flexible since they can be supported by a range of
lower-level protocols. They are generally based on
SOAP [40], a protocol for exchanging information
structured as XML documents, typically through
HTTP connections. Besides, WS involve interface
definition specifications (WSDL [5]) and service
publishing/discovery mechanisms.

Finally, GS middleware has recently emerged from
the joint of WS and grid computing [15]. They are
based on WS technologies, but provide extensions to
better support grid computing, such as state
management and notification exchange. Thus, the

underlying protocols and technologies are the same as
in the case of WS: SOAP for information exchanging
and XML to provide data structuring (among other
possibilities).

In the literature there are some CSCL applications
proposals based on some of these standard middleware
technologies ([10] is an example). However, the
specific characteristics required by CSCL makes some
authors propose their own proprietary middleware
[21,28] in order to ease the development of
collaborative applications. ANTS [16], for instance, is
built on top of the JavaBeans component model and
provides additional services like a distributed event
system and shared data structures.

3. Comparative Analysis

Through this section, we present a comparison

between different middleware paradigms and
technologies introduced above to determine their
suitability to the requirements stated in section 2.1.

Table 1 maps some middleware characteristics,
which would be useful (marked with “Yes”) or
indifferent (-) in order to assist developers to satisfy
these application requirements.

In the next section we show how different
paradigms help to satisfy CSCL application
requirements, offering these middleware
characteristics.

Table 1: Useful Middleware Characteristics to

Fulfill Application Requirements

CSCL Requirements
Middlewar

e
Charac-
teristics

Flexibility Tailorability Technification Reusability Cross-
Org

Coordination/
Awareness

Loosely-
coupled Yes Yes - Yes - -
Highly

abstract - - Yes - - -
Coarse-
grained - - Yes - - -
Oneto
many

comm..
- - - - - Yes

Self-
contained Yes Yes - Yes - -
Standard

Tech. - - - Yes Yes -

3.1. Service vs. Component and Object-
Oriented Middleware

Service-oriented middleware enable runtime

“assembly” of different elements, using standard
loosely coupled technologies [5,29]. This way,
applications result from the integration of one or many
different services, which can be dynamically
assembled, as needed, to satisfy concrete application
requirements. This capability exceeds previous

middleware approaches (object and component-
oriented middleware) in which we would need to
recompile or redeploy [13] respectively (stopping the
application), each time a new object or component
must be added to our application. In this sense,
services enhance the flexibility needed in CSCL
applications because it is possible for users without
technical knowledge (i.e. students or educators) to
integrate the tools required in a specific learning
situation. In this point it is important to remember that
this integration model is not provided by Peer-to-peer
technology (P2P).

A CSCL system must allow teachers to perform
these dynamic changes according to several factors
(see section 2.1), i.e., the system must be tailorable at
run or design time. This may be done using services.
Services can be dynamically added to a set in order to
create an application. The simplest approach could be
an application on the teacher’s side including
command facilities. This enables them to order clients
on the side of students to download a new service
client from a URL and start working with that service.
More sophisticated functionality could be achieved
when a flow language [18] rules the set of used
services.

Furthermore, services usually employ (though they
do not need to) a high level of abstraction, closer (than
objects or components) to non-technical people’s
mental schemas [31]. This way, an application is more
easily integrated by non-technical staff, since they can
understand what services do much better than what
objects or components do, reducing the technification
problem. Besides, this higher granularity makes it
easier to “assembly” software pieces in order to
integrate the whole application. Obviously, one could
build highly abstract objects or components but,
anyway, teachers would require technical assistance to
customize their application.

Services promote software reusability, since the
same service could be involved in many different
applications at the same time. Let’s consider a group
management service employed simultaneously by a
medical application for collaborative telediagnosis and
a collaborative flight simulator. The service would
manage group information regardless of the
application that makes the request, and without
reprogramming.

While services foster run-time software reusability,
software components offer deployment-time and
objects compilation-time reusability. These capabilities
are really useful from a programmer’s point of view,
because they can reuse an object or component
instance, or a service, as many times as needed.
Reusability in services surpasses reusability in object

or component oriented middleware, because an
application can integrate services belonging to external
entities (using standards like HTTP, or XML, for
instance), enabling cross-organizational assembly of
services to build an application.

Summarizing, standardization, run-time flexibility
and coarse granularity employed by service
middleware results in better tailorability for users
without technical knowledge, and, consequently, a
smaller technification problem. From application
programmers’ point of view, service middleware
allows them to use third party services, so they do not
have to deal with service development, nor service
deployment, nor service maintainability. Service
programmers would be in charge of these technical
tasks, saving time by using services provided by other
organization. Consequently, the task of a service-based
application programmer is to select and put together a
suitable set of services. Non-technical staff could
easily accomplish this task (using coarse-grained
services). This makes a difference with other
middleware technologies, where technical staff is in
charge of almost every development stage [13].

3.2 Grid Services vs. Web Services

Services offer some advantages over previous

middleware paradigms for CSCL application
development. Even though GS and WS share the same
middleware paradigm (service-oriented), both include
many subtle differences that could be important for a
concrete application domain, like CSCL.

WS are persistent (non-transient) services, i.e., there
is a single service of each type in each machine
waiting for all-client requests until an authorized
administrator finishes them (manages their lifecycle).
Collaborative applications often require the support of
personal (but simultaneous) activities to achieve a
common goal [11]. Not only is this need for individual
services important, but also it arises a concurrency
problem when different clients simultaneously use the
same service. GS try to solve these problems including
the concept of factories. Factories permit to create new
service instances, instead of using a single service.
Factories imply a higher software reusability and easier
concurrency management.

In spite of cross-organizational interoperability, WS
lack standardization for advanced features to use
heterogeneous hardware resources as those that CSCL
applications may require [36]. Again, GS fulfill this
lack, offering common interfaces to hide heterogeneity
[14]. GS ease development of complex applications
using heterogeneous hardware resources, because

these interfaces allow a standard access and control
mechanism to such devices. Among these
heterogeneous resources, supercomputing capabilities
can also be found.

Communications from one to many are essential in
most synchronous collaborative applications, since
they would be helpful to build awareness and co-
ordination mechanisms. Unfortunately, SOAP message
orientation [40] does not offer such capabilities. In this
sense, GS outperform WS functionality, since
notifications are already included in the standard
specification [14].

Both, web and GS rely on WS standards to support
service co-ordination features (BPEL4WS [18] is an
example). This co-ordination could be considered
equal to activity co-ordination [12], as long as services
keep an appropriate level of abstraction.

WS are generally SOAP-based [5], so they are
stateless entities [40]. In most collaborative
applications there should be a mechanism to keep track
of the information representing the actual state of
collaboration activities. Besides, awareness facilities
require some mechanism to store persistent
information to be delivered to groups or users. This
enables to keep them aware of what is going on that is
interesting to achieve a common goal. GS offer such
mechanisms to keep state information [35], easing the
development of awareness support for collaborative
applications.

Underlying technologies and standards supporting
WS and GS, are almost the same (see Table 2).

Table 2: Service-Oriented Technologies

Comparison

 WEB
SERVICES

GRID
SERVICES

Information Access Programmatically Programmatically
Technology Web Web
Platform Independence High High
Localization URI URI
Communication Overloaded Overloaded
State Stateless Stateful / Stateles
Heterogeneous
Hardware Resources

No Yes

Persistency Persistent
(non-transcient)

Persistent or not

Since standard web technologies are the pillars,
they offer quite similar mechanisms for
communication, localization, and similar independence
and interoperability capabilities. However, there are
small differences (state, persistency and heterogeneity)
that make, as we have explained above, GS slightly

more appropriate than WS for CSCL development. For
instance, GS provide highly dynamic information
mechanisms (based on state information), easing the
development of some required CSCL features like
awareness, and co-ordination.

3.3 Discussion

Object-oriented and component-oriented

middleware do not fulfill some important CSCL
requirements. They lack run-time flexibility and high
granularity (high abstraction level), which results in
worse tailorability for users without technical
knowledge and, consequently, in a bigger
technification problem. On the other hand, not only are
object and component middleware mature, but also
they are still evolving to include some interesting
features for CSCL. For instance state, notifications, or
factories in GS are not a new concept, they were used
in some object and component middleware as well
[26,32]. While CORBA is evolving too, it already
includes cross-organizational facilities to use remote
objects [38].

Subtle differences between WS and GS can save
CSCL application programmers’ effort. Both rely on
the same standard technologies and there are recent
implementations [36] of Open Grid Service
Architecture (OGSA) aiming to fit to WS guidelines,
and new WS extensions supporting stateful services
and notifications [39]. These trends suggest that both
approaches are likely to converge, in mid-term future,
into a single specification. Besides, since the cradle of
GS are high throughput, parallel or data-intensive
computation, current state of the art is still focused on
computation-demanding applications, making it
difficult to develop GS-based production applications.
GS de facto standard, Globus Toolkit 3 (GT3) [35], is
used for testing only and it is going to be replaced soon
[36]. Even though GS paradigm seems more accurate
for CSCL development, WS convergence, maturity,
documentation and GS current state-of-the-art might
make WS more attractive.

In spite of claimed advantages, middleware includes
an extra overload to applications. Data and control
require additional layers of processing. This is the
price to be paid for higher abstraction and
programming simplicity. Moreover, middleware may
not be suitable enough for highly customized solutions.
Middleware vendors try to fulfill as many application
requirements as possible, extending their products with
new capabilities, and promising effortless development
to programmers. Furthermore, specific middleware is
built over general-purpose middleware, adding new

dependencies, interoperability problems, and a muddle
of products that make it difficult to select the most
appropriate one. Consequently, many of them seem to
converge, looking so similar, but keeping soft
differences which contribute to increase confusion.
This makes it difficult to choose a platform, because it
usually depends on the application domain, on the
application itself, and on developers’ preferences. So,
technical, and non-technical issues should be
exhaustively taken into account.

4. Gridcole Testbed

Grid Collaborative Learning Environment

(Gridcole) [2] is GS-based system that enables easy
integration of CSCL applications. More specifically,
Gridcole provides a search facility through a simple
Web Portal that enables teachers with no technical
skills to find and integrate the required GS-based tools
in customized application. This customization is finally
expressed in terms of an educational script. This script
is interpreted by a control unit (a GS again), taking
care of what activities are done by each user, and
when. This unit relies on underlying mechanisms (state
and notifications) provided by GT3 [35].

Gridcole is currently being used as testbed to
validate the claimed advantages in a real environment.
Gridcole enables teachers to select, integrate, launch,
stop and modify the activities they want to employ in
their courses without the intervention of technical
personnel. As long as services are abstract enough to
be understood as a single activity by teachers, Gridcole
eases the technification problem, enabling better
tailorability by using highly granular services.
Moreover, Gridcole enables the use of resources from
other organizations, since services are provided by
third parties using GS technologies. Those services are
loosely-coupled entities which can be assembled or
disassembled at run time, resulting in better flexibility.

So, Gridcole takes the advantages of GS
middleware, bringing an environment for application
integration that enhances some limitations within
CSCL domain. Gridcole has not been completely
developed yet, so more thorough tests should be
performed in order to achieve stronger practical
conclusions.

5. Conclusions

The selection of a middleware technology for

application development is not an easy task. This
selection becomes more difficult due to the hype
surrounding most middleware technologies.

Through this paper we have shown domain-specific
advantages of service-oriented paradigm over other
middleware paradigms (object-oriented and
component-oriented middleware). Service-oriented
middleware has proven to be more suitable to satisfy
requirements of CSCL application development.
However, service-based systems still require assistance
tools for non-technicians. Within services paradigm,
we have compared the advantages of GS over WS in
order to ease the work of technical staff, while
satisfying application requirements. Furthermore,
mature GS technologies are still oriented to
supercomputation. GT3 is considered as a promising
experiment, but the real GS-OGSA (WS compatible)
implementation, WSRF, is expected to appear in mid
2005. Its maturity will take a bit longer.

None of these technologies and paradigms may be
considered to be the “best solution” for CSCL
application development since such a decision must
always be made in regards of the very specific problem
considered. However, the comparisons carried out in
this paper provide helpful hints in this sense.

Furthermore, these middleware paradigms show
common evolutionary trends, expanding their potential
application domains. This may lead to a convergence
in their capabilities, not ensuring, however, their
compatibility. In addition, each one of these paradigms
includes a wide range of technologies, making it even
more difficult such a selection.

We have shown a real environment, Gridcole,
which benefits from the discussed advantages of GS
middleware for CSCL. Furthermore, Gridcole enables
CSCL requiring supercomputation capabilities to get
benefited from external supercomputational resources.
Besides, cross-organizational interactions are highly
static in Gridcole, because third party providers do not
exist yet. Moreover, Grids should be mainly employed
to hide legacy resources, and to offer them in a
standard manner. Gridcole builds everything up from
scratch, so this seems to fit better in a WS
environment. Gridcole relies on GS technology to
provide the advantages of service paradigm for
applications and developers (using few GS extensions
to WS).

Future work includes evaluation in a real
educational environment, in order to verify some
claimed advantages (especially technification for
teachers, and reusability of different services in
different educational scenarios). We are also
considering whether it would be interesting to fix our
implementation to GT3 until the arrival of WSRF, or
whether it is worth it to transitorily migrate to WS.

Acknowlegments

This work has been partially funded by European

Commission Project EAC/61/03/GR009 and Spanish
Ministry of Science and Technology project TIC2002-
04258-C03-02. The authors would also like to thank
the rest of “Intelligent & Cooperative Systems
Research Group” at the University of Valladolid for
their support and ideas.

References

 [1] Berman, F., Fox, G., and Hey, A. Grid Computing:

Making the Global Infrastructure a Reality,
Chichester, United Kingdom: John Wiley & Sons,
2003.

 [2] Bote-Lorenzo, M. L., Vaquero-González, L. M.,
Vega-Gorgojo, G., Dimitriadis, Y., Asensio-Pérez, J.
I., Gómez-Sánchez, E., and Hernández-Leo, D., "A
Tailorable Collaborative Learning System that
Combines OGSA Grid Services and IMS-LD
Scripting", Proceedings of the 10th International
Workshop on Groupware, CRIWG 2004, San Carlos,
Costa Rica, 2004, pp. 305-321.

 [3] Brown, A. W., "Mastering the Middleware Muddle",
IEEE Software, vol. 16, no. 4, July 1999, pp. 18-21.

 [4] Charles, J., "Middleware Moves to the Forefront",
Computer, vol. 32, no. 5, 1999, pp. 17-19.

 [5] Curbera, F., Duftler, M., Khalaf, R., Nagy, W.,
Mukhi, N., and Weerawarana, S., "Unraveling the
Web Services Web: An Introduction to SOAP,
WSDL, and UDDI", IEEE Internet Computing, vol.
6, no. 2, 2002, pp. 86-93.

 [6] Despres, C. and George, S., "Computer-Supported
Distance Learning: An Example in Educational
Robotics", Proceedings of the 9th International PEG
Conference, Exeter, UK, 1999, pp. 344-353.

 [7] Dillenbourg, P., "Over-Scripting CSCL: The Risks of
Blending Collaborative Learning with Instructional
Design", Paper presented at Three Worlds of CSCL.
Can We Support CSCL, P. Kirschner, Inaugural
Address, Open Universiteit Nederland, 2002.

 [8] Dillenbourg, P., Collaborative Learning: Cognitive
and Computational Approaches, Oxford, UK:
Elsevier Science, 1999.

 [9] Dimitriadis, Y., Asensio-Pérez, J. I., Gómez-
Sánchez, E., Martínez-Monés, A., Bote-Lorenzo, M.
L., Vega-Gorgojo, G., Vaquero-González, L.
M., “Middleware for CSCL: Software Components
Framework and Grid Technology Support” (in
Spanish), Inteligencia Artificial, Revista
Iberoamericana de Inteligencia Artificial, vol. 8, no.
23, 2004, pp. 21-31.

 [10] Dimitriadis, Y., Asensio-Pérez, J. I., Martínez-
Monés, A., Osuna-Gómez, C., “Component-Based
Software Engineering and CSCL: Component
Identification and Dimensioning”, Upgrade (digital

journal of European Professional Informatics
Societies), special issue on e-learning, vol. 4, no. 5,
2003, pp. 21-28.

 [11] Ellis, C. A., Gibbs, G. L., and Rein, G. L.,
"Groupware: Some Issues and Experiences",
Communications of the ACM, vol. 43, no. 1, 1991,
pp. 39-58.

 [12] Ellis, C. A. and Wainer, J., "A Conceptual Model of
Groupware", Proceedings of the 1994 ACM
Conference on Computer Supported Cooperative
Work, CSCW 1994, 1994, pp. 79-88.

 [13] Emmerich, W., “Software Engineering and
Middleware”, The Future of Software Engineering.
ACM Press, A. Finkelstein (Ed.), 2000, pp. 117-129.

 [14] Foster, I., Kesselman, C., Nick, J. M., and Truecke,
S., “The Physiology of the Grid”, Grid Computing:
Making the Global Infrastructure a Reality, F.
Berman, G. Fox, and A. Hey (Ed.), Chinchester, UK:
John Wiley & Sons, 2003, pp. 217-249.

 [15] Foster, I., Kesselman, C., Nick, J. M., and Tuecke, S.,
"Grid services for distributed system integration",
Computer, vol. 35, no. 6, 2002, pp. 37-46.

 [16] García, P. and Gómez-Skarmeta, A., "ANTS
Framework for Cooperative Work Environment",
IEEE Computer, vol. 36, no. 3, 2003, pp. 56-62.

 [17] Geihs, K., "Middleware Challenges Ahead",
Computer, vol. 34, no. 6, 2001, pp. 24-31.

 [18] BPEL4WS Business Processing Execution Language
for Web Services, http://www-106.ibm.com/
developerworks/library/ws-bpel/, last visit 2004.

 [19] Jensen, N., Seipel, S., Nejdl, W., and Olbrich, S.,
"COVASE: Collaborative visualization for
constructivist learning", Proceedings of the
Conference on Computer Support for Collaborative
Learning, CSCL 2003, Bergen, Norway, 2003, pp.
249-256.

 [20] Koschmann, T., Paradigm shift and instructional
technology. In: CSCL: Theory and Practice of an
emerging paradigm, ed. Koshmann, T. Lawrence
Erlbaum, 1996, pp. 1-23.

 [21] Li, D. and Muntz, R., "COCA: Collaborative Objects
Coordination Architecture", Proceedings of the 1998
ACM Conference on Computer Supported
Cooperative Work (CSCW 1998), Seetle,
Washington, United States, 1998.

 [22] Lin, J., Sadiq, W., and Orlowska, M. E., "Using
Workflow Technology to Manage Flexible e-
Learning Services", Educational Technology &
Society, vol. 5, no. 4, 2002, pp. 116-123.

 [23] Martins-Ferreira, J. M., Alves, G. R. C., Costa, R.,
and Hine, N., "Collaborative learning in a web-
accesible workbench", Proceedings of the 8th
International Workshop on Groupware, CRIWG
2002, La Serena, Chile, 2002, pp. 25-34.

 [24] .Net, http://www.microsoft.com/net/, last visit 2004.
 [25] Morch, A., "Three Levels of End-User Tailoring:

Customization, Integration and Extension",
Proceedings of the 3rd Decennial Aarhus
Conference, Aarhus, DK, 1995, pp. 157-166.

 [26] CORBA: Common Object Request Broker
Architecture, http://www.corba.org, last visit 2004.

 [27] CORBA Component Model v. 3.0, http://www.omg
.org/technology/documents/formal/components.htm,
last visit 2004.

 [28] Orozco, P., Asensio, J. I., García, P., Dimitriadis, Y.,
and Pairot, C., "A Decoupled Architecture for
Action-Oriented Coordination and Awareness
Management in CSCL/W Frameworks", Proceedings
of the 10th International Workshop on Groupware,
CRIWG 2004, San Carlos, Costa Rica, 2004, pp. 246-
261.

 [29] Papazoglou, M. P. and Georgakopoulos, D., "Service-
Oriented Computing", Communications of the ACM,
vol. 46, no. 10, 2003, pp. 25-28.

 [30] Ramamurthy, M. K., Wilhelmson, R. B., Pea, R. D.,
Louis M., and Edelson, D. C., "CoVis: A National
Science Education Collaboratory", Proceedings of the
American Meteorological Society 4th Conference on
Education, Dallas, TX, USA, 1995.

 [31] Roschelle, J., DiGiano, C., Koutlis, M., Repenning,
A., Phillips, J., Jackiw, N., and Suthers, D.,
"Developing Educational Software Components",
Computer, 1999, pp. 50-58.

 [32] EJB: Enterprise JavaBeans Technology,
http://java.sun.com/products/ejb/, last visit 2004.

 [33] Java Message Service (JMS), http://java.sun.
com/products/jms/, last visit 2004.

 [34] Szyperski, C., "Component Technology - What,
Where and How?", Proceedings of the 25th
International Conference on Software Engineering,
ICSE 2003, Portland, Oregon, USA, 2003.

 [35] The Globus Project, www.globus.org, last visit 2004.
 [36] WSRF: The WS-Resource Framework,

http://www.globus.org/wsrf/, last visit 2004.
 [37] Thompson, J., "Avoiding a Middleware Muddle",

IEEE Software, vol. 14, no. 6, 1997, pp. 92-98.
 [38] Vinoski, S., "New Features for CORBA 3.0",

Communications of the ACM, vol. 41, no. 10, 1998,
pp. 45-52.

 [39] Vinoski, S., "Web Services Notifications", Column
from IEEE Internet Computing, vol. 8, no. 3, 2004,
pp. 90-93.

 [40] SOAP v. 1.2, http://www.w3.org/TR/soap12-part1,
last visit 2004.

